

ARC Update on Warm Mix Research By Hussain Bahia

Presented to Manitoba, Infrastructure and Transportation Materials Engineering Branch Central Lab, 1181 Portage Avenue Annex Winnipeg, Manitoba March 17, 2009

ARC Subtask E1c-1: *Effect of WMA Additives*

- Progress Update
 - -Binder Properties
 - Viscosity
 - Performance Grade
 - Mixture Workability
 - Compaction Curves
 - Workability Indices

Effect on Viscosity: PG64-22

PG64-22 Viscosity vs. Shear Rate

Effect on Viscosity: PG76-22

PG76-22 Viscosity vs. Shear Rate

Effects of WMA Additives: HT PG Grade (G*/sin δ)

2% Sasobit - One Grade Bump

Effects of WMA Additives: HT PG Grade (MSCR)

Sasobit shows much higher stress sensitivity

Effects of WMA Additives: LT PG Grade

Temperature -12°C Temperature -12°C 300 0.50 Stiffness at 60 sec, MPa 250 0.40 200 m-value 0.30 150 0.20 100 0.10 50 0 0.00 Surfactant 0.5% Surfactant 0.5% Sasobit 2% Sasobit 2% Control Control PG64-22 PG76-22 PG64-22 PG76-22

Mixture Workability

– Mix Design

- NMAS: 19.0 mm/Gradation: Fine /AC: 5.4%
- Binder Grades
 - PG64-22-and polymer-modified PG76-22
- Evaluation Criteria
 - Compaction Curves and Air Voids
 - Workability indices
 - > Construction Densification Index (CDI)
 - > Construction Force Index (CFI)

Mixture Workability - CDI

- CDI Based on Compaction Curves:
 - Area under the %Gmm vs. Gyration Curve from Nini 92% Gmm. Densification after paver to field compaction.
 - Lower CDI relates to better workability.

Mixture Workability - CFI

- CFI Based on Force Measured by PDA Plate:
 - Pressure Distribution Analyzer (PDA) allow for calculation of resistive forces in the mix during compaction (*w*)
 - CFI calculated as the area under the Resistive Force (*w*) vs. Gyration curve

Mixture Workability – 600KPa

• No noticeable effects of WMA Additives.

Asphalt Research Consortium

• Additives allow mixes at 90°C to attain density of control mix at 135°C.

Mixture Workability – 300KPa

Mixture Workability – CDI- 600KPa

PG 76-22 Voids Analysis - 600 kPa, N=21 Gyrations

PG76: CDI vs. Temperature - 600 kPa

- Little difference between mixes until 90°C compaction temperatures.
- WMA has significantly lower % Air Voids.
- CDI shows similar trends. WMA much more workable at 90°C than HMA.
- CDI of WMA 66% lower.

Mixture Workability – CDI- 300KPa

Mixture Workability - CFI

PG76: CFI vs. Temperature - 600 kPa

- Construction Force Index
 - Force measurements are consistent WMA additive requires less force to reach the same level of compaction.

Moving Forward – Binder

		η	Adhesion / Cohesion	Rutting (OB & RTFO)		Fatigue (PAV)		Low Temperature (PAV)	
Binder	PG Grade	ZSV	UW-Madison Tack Test	G*/sinδ- (HT °C)	MSCR (HT°C)	G*sinδ (IT °C)	BYET (IT °C)	BBR (LT+10°C)	SENB (LT+ 10°C)
Neat L	64-22	\checkmark	х	\checkmark	\checkmark	~	\checkmark	\checkmark	х
Neat H	76-22	~	х	~	~	~	~	\checkmark	х
Neat L+ 2% Sasobit	70-22	~	х	~	~	~	\checkmark	\checkmark	х
Neat H+ 2% Sasobit	76-22	~	х	~	~	~	\checkmark	\checkmark	х
Neat L + Surfactant	х	~	х	~	~	х	х	\checkmark	х
Neat H + Surfactant	Х	~	X	~	~	х	х	✓	х
Neat L Foamed	Х	х	X	х	х	х	х	x	х
Neat H Foamed	х	х	x	x	x	x	x	x	Х

ARC Asphalt Research Consortium X = Test is planned

Moving Forward – Workability

			Binder										
			PG64-22					PG76-22					
Gradation	Pressure [kPa]	Comp. Temp. [°C]	Control	Mineral Based Additive	Surfactant	Foaming	Sasobit	Control	Mineral- Based Additive	Surfactant	Foaming	Sasobit	
19mm Fine	600	135	\checkmark	\checkmark	Х	Х	Х	\checkmark	\checkmark	Х	х	Х	
		110	\checkmark	\checkmark	\checkmark	х	Х	\checkmark	\checkmark	\checkmark	X	Х	
		90	\checkmark	\checkmark	\checkmark	х	Х	\checkmark	\checkmark	\checkmark	x	Х	
	300	135	\checkmark	\checkmark	х	х	Х	\checkmark	\checkmark	Х	x	Х	
		110	\checkmark	\checkmark	\checkmark	х	X	\checkmark	\checkmark	\checkmark	x	Х	
		90	\checkmark	\checkmark	\checkmark	х	Х	\checkmark	\checkmark	\checkmark	x	Х	
19mm Coarse	600	135	x	Х	Х	х	Х	Х	Х	Х	X	Х	
		110	x	Х	Х	х	X	Х	Х	Х	X	Х	
		90	x	Х	Х	х	Х	Х	Х	Х	X	Х	
	300	135	X	Х	Х	х	Х	Х	Х	Х	Х	Х	
		110	X	Х	Х	х	X	Х	Х	Х	X	Х	
		90	x	х	x	x	x	Х	х	Х	x	Х	

 \checkmark = Test completed

ARC Asphalt Research Consortium X = Test is planned

Testing of Field Mixtures

Field Projects in WI – 2008

Field Mixes – with RAP

Aggregate	HMA - Design	HMA - UW	WMA - 30% QC	WMA-40%
Compaction Temp (F)	275	275	215	221
Nini - 7	91.2%	90.4%	92.0%	93.8%
Ndes - 60	96.1%	95.4%	97.0%	98.3%
Nmax- 75	96.6%	95.8%	N/A*	N/A*
VMA	14.10	12.86	12.30	11.00
*WMA QC samples were				

Summary / Wish List

- WMA works at lower temps
 - Density is not a good measure
 - Better use densification indicators
- Project should include true control
 - -HMA @ same temps as WMA
 - Enough materials
 - -Good recording of temp, roller passes and sampling

Thank you !

- For giving us the opportunity
- For the warm reception to talk about warm asphalt
- Getting us to visit Winnipeg during our spring break!

