

Asphalt Binder Expert Task Group ARC Update - Binder Fatigue

Carl Johnson and Hussain U. Bahia University of Wisconsin - Madison September 16, 2009

Binder Fatigue Update

- Background
 - Where we left off at the previous meeting
- Binder Yield Energy Test (BYET) update
 - Fatigue Task Group meeting in April 2009
 - Modeling challenges remain
- Accelerated cyclic fatigue developments
 - Amplitude sweep test
 - Adaptation of VECD analysis
- LTPP binder testing preliminary findings
- Next steps

Binder Yield Energy Test

• Monotonic (non-cyclic) test

Done at 0.01 / sec

BYET Damage Modeling

$$\tau(t) = R \int_0^t G(t-\tau) d\tau \quad \longrightarrow \quad \tau(t) = R \left[G_\infty t + \sum_{i=1}^N G_i \rho_i \left(1 - e^{-\frac{t}{\rho_i}} \right) \right]$$

Proposed Limits for Yield Energy, MPa (February 2009)

(Adjusted to 1.0 MPa, at IT-8C)							
Pavement Micro-strain		1000	600	200			
	Binder Strain	5%	3%	1%			
Traffic ESALs	(S) 1000000	1.20	0.90	0.25			
	(H) 3000000	1.35	1.00	0.30			
	(VH)10000000	1.50	1.10	0.35			

Modeling Challenges with Modified Binders AAPT 2009 Paper (Johnson, Wen, Bahia)

Follow up steps

- Based on discussion at AAPT, it was recommended that <u>higher loading rates</u> be used.
- Detailed communications with Professor Richard Kim
 - -Goal of higher rates is to isolate visco-elasticity from visco-plasticity in mixture testing.
- Meeting with fatigue task group (April 09)

Fatigue Task Group (April 2009) Meeting Objectives

- Identify tests, and details, to be evaluated for binder fatigue validation (LTPP binders)
 - Monotonic
 - Stress or strain sweep
- Identify mixture testing required
 - Beam fatigue
 - IDT
 - Others

Effect of Rate on Monotonic Test- Feb-March 08

- Slippage began to occur at shear rates of 8% per second
- Limited by equipment capabilities

New Parameters for the Monotonic Test were Considered

Effects of Modification Type, Level and Cross-linking

PG58 RTFO 0.0075 BYET 11°C

Effect of Polymers (After PAV) (Elastomers W/W0 XL & Plastomers)

Interim Findings

- Test is practical
- Test is repeatable
- Can easily identify modification and possibly crosslinking
- Cannot be used for damage analysis (VECD theory)
- More later

Fatigue Task Group Meeting Outcomes

- Binder test Protocol
 - Monotonic
 - Strain rate: based on analysis of ALF mixtures
 - Aging condition: RTFO and PAV (1), +2, +3 6C)
 - Stress / strain sweep (Yes) ALF binders +
 - Frequency: 1.59?
 - Aging condition: RTFO ?
- Mixture Testing
 - Uni-axial Test 3 strain levels correlate to binder monotonic
 - Define what rates we should use for BYET
 - Richard Kim / Nelson Gibson data for mixtures --- ?
 - Beam fatigue (no)?
 - IDT monotonic (yes) ?
 - Next meeting, June 8-10 (CA), NAPA.

Cyclic Test Development

- Higher rates possible during cyclic testing due to lower amplitudes (20% vs. 2,000%).
- Cyclic testing more indicative of fatigue-type failure
- Refinement of amplitude sweep procedure allows easier application of damage modeling (VECD)
 - Strain sweep with linear ramping

Time Sweep and Amplitude Sweeps

Linear Step Strain Sweep

Strain Sweep Example Data

Analysis of Strain Sweep

B6286, ALF, 19C 9% Time Sweep M(D)

VECD Fatigue Prediction Model

• With the VECD curve fit to a simple numeric equation:

$$|G *| \sin \delta = C_0 - C_1(D)^{C_2}$$

• Fatigue life can be predicted using:

$$N_f = \frac{f(D_f)^k}{k\left(\pi \frac{I_D}{|G^*|} C_1 C_2\right)^{\alpha}} |G^*|^{-\alpha} (\gamma_{max})^{-2\alpha}$$

 $k = 1 + (1 - C_2)\alpha$

VECD Fatigue Prediction Model

• The fatigue life equation can be further simplified in the form of the common fatigue law:

 $N_f = A(\gamma_{max})^B$

• Parameters *A* and *B* were determined from both strain and time sweep results.

Simulated Fatigue

Pavement Structure

Relating Amplitude Sweeps to Pavement Performance – Mechanistic Approach

Relating Amplitude Sweeps to Pavement Performance – Mechanistic Approach

Specification-Type Protocol

- Proposed accelerated fatigue procedure:
 - **1.** Perform following tests:
 - G* vs frequency >> Determine the value of the factor α .
 - Perform the amplitude sweep at IT grade temperature.
 - **2.** Calculate the following parameters
 - Damage intensity to build VECD curve.
 - Determine curve fit coefficients to calculate A and B.
 - **3.** Predict number of cycles to failure (Nf) using appropriate strain level based on pavement structure and traffic loading.

Binder Nf Estimated from Amplitude Sweep + VECD analysis

$$N_f = \frac{f(D_f)^k}{k \left(\pi \frac{I_D}{|G^*|} C_1 C_2\right)^{\alpha}} |G^*|^{-\alpha} (\gamma_{max})^{-2\alpha}$$

Where $k = 1 + (1 - C_2)\alpha$; f = loading frequency, Hz; $|G^*| = \text{undamaged complex shear modulus};$ $D_f = \text{damage accumulation at failure.}$

Kim, Y., H. J. Lee, D. N. Little and Y. R. Kim, "A simple testing method to evaluate fatigue fracture and damage performance of asphalt mixtures", *J. Assn. Asphalt Paving Technologists*, v75, 755-788, 2006.

• Fatigue model: Nf = A (γ_{max})^B

- Can be calculated automatically by DSR software

Example Results of Amplitude Sweep Analysis

Strain Sweep VECD model inputs and results.

Binder	D_{f}	2.5% N _f	5.0% N _f	A	B
64-SBS	1,015	57,894	1,480	7.371E+06	-5.290
64-ELV	1,143	18,622	573	1.855E+06	-5.022
58-ELV	1,015	53,053	1,587	5.491E+06	-5.063
64-NEAT	1,156	32,028	781	4.343E+06	-5.358

$$Nf = A (\gamma_{max})^{B}$$

Proposed Limits for Binder (Nf / ESALs) Estimated from Amplitude Sweep

(Measured at IT)							
Pavement Micro-strain		1000	600	200			
	Binder Strain	5%	3%	1%			
Traffic ESALs	(S) 1,000,000	1.20	0.90	0.25			
	(H) 3,000,000	1.35	1.00	0.30			
	(VH) 10,000,000	1.50	1.10	0.35			

Next Steps

- Draft an AASHTO Procedure for Linear Amplitude Sweep and VECD modeling.
 - Estimate A, B and binder Nf
- Draft an AASHTO Procedure for Binder Yield Energy Test (BYET)
- Continue testing for validation
 - LTPP
 - More modified binders (F2a)
- Working with TFHRC Group
 - Sharing a common set of binders
 - TFHRC can perform Double-Edged Notched Tensile (DENT) testing to calculate Equivalent Work of Fracture (EWF)

LTPP Study

- 30 binders ordered from the LTPP MRL
 - From all four climate types
 - **(DN, DF, WF, WN)**
 - PG-grades range from 52-40 to 76-22.
 - Area of fatigue cracking ranges
 - **•** from 0 338 m².
- Compare binder fatigue test results to pavement performance

LTPP Binders

LTPP Binder Fatigue Cracking

PG Grade

Thank You!

- Hussain U. Bahia
 - -bahia@engr.wisc.edu
 - -<u>uwmarc.org</u>

