

International Union of Laboratories and Experts in Construction Materials, Systems and Structures

RILEM Technical Committee 206 - ATB Task Group 2: Mixture Design & Compaction

A. Coenen, E. Mahmoud, & H. Bahia – University of Wisconsin

M. Emin Kutay - Michigan State University

October 19-20, 2009, Warsaw, Poland

Outline

- Project overview
- Project progress
 - -Imaging Software & Analysis
 - -TG2 Member Feedback
 - -Initial Analysis
 - Development of Standard Procedure
 - -State-of-art Report
- Moving forward

Project Overview

Essential Tasks:

- Comparison of compaction temperature & pressure
- Comparison of compaction methods
- Comparison of laboratory compaction to field samples
- Measurements
 - Aggregate Structure : contact points, orientation, & segregation
 - Density
 - Mechanical Properties
- State-of-the-art report
 - Lab compaction methods
 - Field compaction methods

Project Overview- Steps

- **1. Establishing protocols for compaction methods**
- **2.** Shipping, preparing and compacting loose LCPC mix.
- **3.** Coring and shipping field samples from LCPC France.
- 4. Performing x-ray tomography on lab and field samples.
- 5. Performing scanned image (2D) analysis.
- 6. Performing gamma-ray analysis on lab and field samples.
- 7. Performing mechanical testing
 - On samples with high variability in internal structure.
- 8. Collecting, analyzing and compiling the results into a common database.

Project Status - Samples

- Specimens from Superpave gyratory, German Steel Sector, Marshall, and Kneading Compactor (UW, AIT, UC-Davis, MTU, TU-B) have been:
 - X-rayed at Turner Fairbank Highway Research Center
 - Shipped to UW, cut and 2D imaginged with flatbed scanner.
 - Processing and analysis is underway.
- Specimens from French roller, CE Gyratory, German Sector, and Marshall (LCPC, EMPA, TU-B, Parma)
 - at LCPC for gamma-ray density scanning

Project Status – Samples

- Nottingham and Palermo have completed compaction
 - Specimens at Palermo are being sawn and imaged for 2D analysis
- Additional material sent to TU-Braunschweig for further compaction and mechanical testing

Specimen Status-Updated Oct '09 – 12 Labs

LAB No.	LAB name	Gyratory – US	Gyratory - CE	French Roller	German sector	Marshall	Hveem	Status	
10	AIT					Χ		At UW via FHWA	
14	UC – Davis			X			Х	Hveem @ UW via FHWA, French Roller specs compacted & on hold	
2	EMPA	Х		Х		Х		Compaction data received, waiting for update/request from group	
7	LCPC		Χ	Χ				Compaction data received	
9	Liverpool				Х			Compaction data received	
3	Michigan Tech	Χ						At UW via FHWA	
10	Technical Univ. of Braunschweig		Х		х	Х		Compaction completed, German sector at UW via FHWA, Gyratory & Marshall at LCPC	
5	Total-France		Χ	Χ				Unsure	
8	UFC – Petrobras	Χ		Χ		Х		Unsure	
11	Univ. of Parma				Х			AtLCPC	
1	UW – Madison	х						Compaction data received, additional specimens used for compaction temp/pressure analysis	
16	Nottingham		Χ					Compaction completed, no additional news	
21	Univ. of Palermo				Х			Delayed due to lab move/construction	

October 19-20,

Project Status – Software

- Completed major improvement 2D Software
- Latest version distributed to TG2 members.
 - Trials performed by members, feedback is used in next iteration of software.
- Analysis of gyratory specimens complete, data analysis underway.
 - Variables include: compaction temperature & pressure, NMAS, ESALs, binder grade and aggregate type.
- Draft ASTM standard completed (hard copies available)

Imaging Software & Analysis

- Updated 2D Software distributed to TG2 Members along with:
 - -Step-by-step instructions for installation & use
 - -Two trial images and accompanying files
 - -Survey for members to provide feedback

Files still available for download through:

http://www.uwmarc.org

Software Access - @www.UWMARC.org

 International Union of Laboratories and Experts in Construction Materials, Systems, and Structures (RILEM)

MARC members serve on several RILEM technical committees, including Technical Committee 206-ATB on Advanced Testing and Characterization of Bituminous Materials. Hussain Bahia chairs this committee's Task Group 2 on HMA compaction methods and models.

Task Group 2 Web page

Image Analysis Software

- Software installation package [EXE, 261 MB]
- Supplementary files, including an instruction manual (with a feedback survey) and sample images [ZIP]

Survey Response

			No	No	t Sure		Yes
•	Was the software easy to use?		1	2	3	<u>4</u>	5
•	Was the Step-by-step procedure easy to	follow?	1	2	3	<u>4</u>	5
•	How much time did you spend adjusting filtering values to obtain what you considered acceptable?						
	First Image	5min	15min	25min	<u>more</u>		
	Second Image	5min	<u>15min</u>	25min	more		

For those new to image processing, 25 or more minutes for the first attempt but much less (15 minutes) by the second trial.

For those with prior imaging experience, 10-15 minutes was the typical time .

*ONLY A HANDFULL OF FEEDBACK SURVEYS HAVE BEEN RECEIVED, PARTICIPATION AND COMMENTS ARE STILL WELCOME

Survey sent to...

AARON R COENEN

ALLEX ALVAREZ ANDREW HANZ ANTONIO MONTEPARA ARIANNA COSTA ARTAMENDI IGNACIO BERND OLDE SCHEPER BERTRAND POUTEAU CARL MONISMITH CHANTAL DE LA ROCHE CHICHUN HU CHRISTIANE RAAB CLARA CELAURO **DAVID HELDT EDITH ARAMBULA** EMAD KASSEM **EMMANUEL CHAILLEUX ENAD MAHMOUD**

EYAD MASAD FERHAT HAMMOUM GILLES GAUTHIER GORDON AIREY HAIZHU LU HUSSAIN A. KHALID HUSSAIN U. BAHIA HYUNWOOK KIM IAN RICKARDS IRWIN GUADA JAMES GRENFELL JAMILLA LUTIF Janet Jackson

Janet Jackson JEAN-PASCAL PLANCHE JOHN HARVEY JORGE SOARES JOSEPH ANONCHIE-BOATENG

KITAE NAM KONRAD MOLLENHAUER KUNNAWEE KANITPONG LINBING WANG LUIS NASCIMENTO **M. EMIN KUTAY MANFRED PARTL** MASSIMO LOSA **MICHAEL P. WISTUBA MICHELE DAL TOE** CASAGRANDE **MURAT GULER** PETER RENKEN **ROLF LEUTNER** SANJEEV ADHIKARI **SHU WEI GOH** SILVIA RASTELLI

XINJUN LI Yongrak kim Yu liu Zhanping you

RED names indicate individuals that have provided feedback via survey. Thank you!

Clear distinction of two parts to software

Detail of two part process

Accounting for specimen properties

GV_E1_58-28_STH77_Ash_12.5mm_1	20C_600KPa_3.86%-1.tif	
🗅 🛎 🖬 🎒 👌 🍳 🖑	ے اے ایک	
1) Open Image		
2a) Find Resolution 2b) Enter Resolution	Volumetrics	
3) Crop Image	VTM: Air voids (%) 5.18	
4) Specimen Props	P_b: Binder content (%) 5	
Med Filt Size: 5 Hmax Size: 40 Threshold: 95	G_s: Specific gravity of aggregates	
Min.Ag.Sz.(mm) 12.5 - 5) Apply Filters	G b e: Specific gravity of binder	
6a) Contact Points 6b) Orientation	1.023	
6c) Segregation	OK Cancel	

Coenen, Mahmoud, Kutay & Bahia

Entering laboratory aggregate gradation of mix

OV_E1_58-28_STH77_Ash_12	.5mm_120C_600KPa_3.86%-1.tif	
	Select the txt file for the gradation	
Contact Points 6a) Contact Points 6b) Orientation	Select the txt file for the gradation Look in: proc Angles_LS_E3_58-28_STH96_Waup_12.5mm_60C_600kPa_4.31%-2.txt STH96_12.5_1510-01-73.txt File name: STH96_12.5_1510-01-73.txt File sof type: (*.txt) Image: STH96_12.5_1510-01-73.txt Files of type: (*.txt) Image: STH96_12.5_1510-01-73.txt Files of type: (*.txt) Image: STH96_12.5_1510-01-73.txt Files of type: (*.txt)	
	For Help, press F1	NUM

Matching of laboratory gradation & volumetric fraction with image based findings

Sample Output: Orientation (uniform radial)

Sample Output: Orientation (uniform horizontal)

Coenen, Mahmoud, Kutay & Bahia

Sample Output: Segregation

Initial Analysis – Aggregate Orientation *Procedures after Tashman et al. 2001-AAPT*

Currently working on data presentation for better understanding by readers/viewers. This is done by converting from original histogram to polar coordinate system by fitting a harmonic function to data.

Harmonic Fit Calculations After Masad et al. 1998

Frequency Fit :

 $freq_{harm} = freq_{ave} (1 + a^* \cos^2 \theta + 2b^* \sin \theta \cos \theta - a^* \sin^2 \theta)$ where: $a = \frac{2\sum_{k=1}^{N} \cos(2\theta_k)}{N}$ $b = \frac{2\sum_{k=1}^{N} \sin(2\theta_k)}{N}$

and N=total number of aggregates accounted for in image

A, Amplitude: = MAX(freq_{harm}) – MIN(freq_{harm}) δ , peak position: e_x [MAX(freq_{harm})] or angle of the MAX(freq_{harm})

Harmonic Fit Parameters

$\delta = \mbox{Predominant}$ angle, A= Severity of angle dispersion

Polar Representation

m

 Major Axis – Identifies predominant aggregate orientation & represents maxima of harmonic fit

 Minor Axis –
 Represents minima of harmonic fit

- Difference between max & min represents (A=amplitude of harmonic fit) . It indicates level of uniformity.
- *A uniform distribution is represented by a perfect circle in Polar coord.*
- As angles deviate more from uniform, the ellipse is more "pinched" in Polar coordinates.

Initial Analysis-Effect of Compaction Method on Orientation

Effect of Compaction Method – Initial Analysis

Orientation

 δ : Indicates the predominant orientation angle A: represents the amplitude or severity of deviation from uniform (zero=uniform)

Compaction Method	δ	Α
Kneading Compactor	126	2.78
Marshall	125	2.76
German Steel Sector	167	0.22
Superpave Gyratory	90	5.54

Preliminary Results

- Effect of Compaction Method on Orientation
 - The software is capable of measuring the orientation angle with respect to two reference points, from horizontal & from the radial arm from center of image
- We need to work more on the polar plots or the harmonic representation
 - Least square fit of harmonics will be tried
 - Improve d representation of dispersion

Standard Procedure

- A Standard Procedure has been drafted to detail:
 - -Image processing
 - Image analysis
 - -Critical parameters
 - -Consistent reporting format/units

Standardization is Underway

Standard Method for

Determining Aggregate Structure in Asphalt Mixes by Means of Planar Imaging

Designation: xx-xx

1.	SCOPE
1.1.	This standard covers the measurement of aggregate structure indicators of asphalt mixes using digital image analysis techniques.
1.2.	This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. **REFERENCED DOCUMENTS**

State-of-Art Report: Outline

- > Introduction
 - Motivation for Study
 - History of Laboratory Compaction
 - > Engineering Considerations (e.g. How to approximate field compaction efforts)
- SuperPAVE Gyratory Compactor
 - > History
 - Engineering Principles Concepts behind using compactor
 - Standard Procedure Standards/Specifications etc.
 - Current Usage Distribution of usage, frequency of usage
- Marshall Compactor
 - > Same
- California Kneading Compactor
 - > Same
- French Roller Compactor
 - > Same
- German Sector Compactor
 - > Same

Outline Continued

- Laboratory Comparison, testing results, and ability to estimate field conditions
- Relating laboratory compaction to field compaction & to mechanical properties and imaging
 - Application of Imaging Technology to compare \geq laboratory and field compaction
 - **Effect of Compaction Methods on Air Void Distribution Using Image Analysis Techniques**
 - **Relationship of Field Compaction Pattern to Air Void** Distribution
 - Effect of compaction method on mechanical properties of asphalt mixtures
 - **Comparison of Laboratory and Field Mechanical** properties: Hamburg test, overlay test, and permeability

Image Capturing and Analysis Related to Internal structure

- Digital Camera
- >X-Ray Tomography
- >Air Void Distribution (effect of compaction method)
- >Aggregate Orientation (angle of inclination and vector magnitude)
- >Aggregate Contacts
- >Aggregate Segregation
- Imaging Standard
- > References

Summary of Outline

Section assignments/sources

Moving forward...

- Completed preliminary analysis of effects of compaction temperature and pressure as well as compaction method
 - Subsequent studies to include laboratory comparison with field cores
- Mechanical testing of specimens
- Development of relation between lab and field compaction
- Draft State of the Art report by March 2010

Thank you!

• Questions?

 For more information,
 Please contact Mr. Aaron Coenen: – arcoenen@wisc.edu

Next Year Meeting – Would like to welcome you to UW - Madison

October 19-20,

Madison- A city between lakes

Engineering Complex

Two hotels within walking distance

- Many within a short bus ride or drive
- Parking next door to building
- One of the most beautiful capital buildings within 25 minutes walk
- Free campus bus morning to mid night
- 40,000 + students running around
- October is when fall tree colors peak

Fly to Chicago or to Madison

- Bus from Chicago airport terminal to campus

 6 times a day
- Many direct flights to Madison airport (MSN)
 - -United, AA, NWA-Delta, Continental,
 - Washington DC
 - Detroit
 - Dallas
 - Newark and NY LaGuardia
 - Minneapolis

Possibility of organizing workshops Site visits

- Rilem TGs
- ISAP working groups
- One of the largest Recycling HMA plants
- Weekend before
 - Chicago cultural tour one day
 - Frank Lloyd Wright Museum ½ day

