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Outline

• Introduction : bituminous materials

• ENTPE experiments on binders and mastics ENTPE experiments on binders and mastics 

 linear domain : Linear Viscoelasticity (LVE) (1 & 3 D)

 Fatigue 

• From binder to mastics & mixes in linear domain

d li d l
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• Modeling: 2S2P1D Model 

• Advanced experimental investigation on fatigue

• Conclusion
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Two types of devices for bituminous 
materials: mixes, mastics & binders

Tension/Comp. 
(T/C) 

H=160mm, ext=80mm

• Homogeneous  &  field

Annular Shear 
Rheometer  
(ASR)

H 160mm, ext 80mm

7

Homogeneous  &  field
• Local strain measurements from 

some 10-6 to some 10-2

• High stress and strain resolutions
• precise loading conditions
• Temperature control
• Sinusoidal loading up to 10Hz

H=40mm, ext=105mm, th=5mm

Annular shear rheometer (ASR)

• “Large” scale sample

• For bitumens and mastics up to sand 
bituminous mixes

• One device for a large range of 
temperatures and frequencies

• Mastics with “high” filler content

8

• Mastics with high  filler content

Complete linear 
viscoelastic 

characterization: G* ASR
apparatus

piston of
hydraulic press

thermal
chamber
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Principle of the ASR

• Specimen =

hollow cylinder
h = 40 mm

aluminum hollow
cylinder

 homogeneous test

• Axial and sinusoidal loadings 
in strain or in stress mode

 viscoelastic behavior

 fatigue behavior

aluminum core

bitumen

specimen

9

 fatigue behavior

• different frequencies and 
different temperatures

bitumen
or mastic

air pressure
system used

at high T°Complex modulus G*

Measured from 103 to 1010 Pa

• Emission of high 
f            

Piezoelectric 
sensors

New on DSR: Piezoelectric sensors

frequency wave          
(fr100 KHz)

• Measure of the travel 
flying  time => wave 
rate => G*(fr)

ER

E: emitter

R: receiver

tetr
Travel time t= tr-te

Rate: Cs= e/t

10

Inner mold

Sample

Outer molde

Continuous evolution of 
G*(fr) during fatigue tests



17/09/2010

6

Kind of test and measurement

• Tension/compression Complex Young’s
d l

LVE Theory

Axial stress

Axial strain

Radial strain

modulus 
E*=(01/01) ej

Poisson’s ratio 
*=(01/02) ej

3D h

(t) = 01 sin(t)

(t) = 01 sin(t+)

(t) = 02 sin(t+)

11

3D approach
 Annular Shear Rheometer

Shear stress
Shear strain

Shear modulus 
G*=(0/0) ej

1D approach

(t) = 01 sin(t)
(t) = 01 sin(t+)

Kind of test and measurement

• Tension/compression

LVE Theory

Isotropic caseE* *

G* = E*/{2(1+*)}

12

 Annular Shear Rheometer

G*
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Bitumen (B 50/70) : master curves

13

Shift factor : aT

Close shift factor for E* and  fixed by the binder

Binder E* Mastic E*

1

2

( )
log

( )
R

T
R

C T T
a

T T C

 


 

Binder *
Mix E*

Mastic *

14
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Experimental investigation in p g
the linear domain at ENTPE

• Influence of Binder & mastic types

15

Materials: filler

• limestone filler 

ll d d fill ith

Coefficient of uniformity

- well-graded filler with 
particles size  < ~ 100 µm

 noted LSW100µ

if l d d fill i h

- well-graded filler with 
particles size  < ~ 10 µm

 noted LSW10µ

16

• diorite filler, noted D

- uniformly-graded filler with 
particles size ~ 63 <  < ~ 100 
µm

 noted LSU100µ
d60 : particles diameter 
corresponding to 60% passing

d10 : idem for 10% passing

Delaporte, Di benedetto & al. 2007, 2008
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Materials: binders

• 50/70 penetration grade bitumen, noted B5070

• B5070 aged, after RTFOT (Rolling Thin Film Oven 
Test) and PAV (Pressure Air Vessel), noted B5070A

• Different filler concentrations (in volume): from 30% to 
55%

17

filler
f

filler bitumen

v
c

v v
=

+

Time Temperature Superposition Princip.

• Construction of the master curves: shifting procedure
 Shift factors aTShift factors aT

 Equivalent (reduced) frequency: fe = aT . fr

• About 10 isotherms
Tref = +10°C

mastic with 40% filler mastic with 40% filler

18

aT
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Shift factors aT WLF law :

C = 18 2C1 = 18.2 
C2 = 136.2
Tref = 10°C

C1 = 29.8 
C2 = 214.0
Tref = 10°C

Tref = +10°C

19

Identical shift factor aT for the mastics and the corresponding 
binders on the whole range of temperatures:

• 1 non aged bitumen with 13 mastics

• 1 aged bitumen with 3 mastics

Effect of filler concentration on |G*|

• Master curves of |G*| @ 10°C, LSW100µ

• 4 volume concentrations of filler:
HMA with
6% B5070• 4 volume concentrations of filler:

 30%

 40%

 50%

 55%

• 1 HMA
 6% B5070

6% B5070

mastics

binder

20

 6% B5070
 |G*| = 1/3 |E*|

is assumed

 of the slope at low fr: 
seems to tend toward a 
constant G0

?
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• Master curves of f @ Tref = 10°C

• 4 volume concentrations of filler:

Effect of filler concentration on 
pure binder

f → 90°
when f → 0• 4 volume concentrations of filler:

 30%

 40%

 50%

 55%

• HMA

• decrease of 

when fr → 0

increase of 
concentration

21

• decrease of 
for mastics, at high
temperature when
frequency decreases

Identical 
at low T°

Influence of the filler concentration on G*

• norm |G*|
 increases with the filler contentincreases with the filler content

 seems to tend towards G0 when fr tends toward 0 (high cf)

• phase angle 
 identical  for bitumen and mastics except at very low 

frequencies (or high temperatures)

 decrease of  at very low frequencies (depending on 
concentration)

filler

22

elastic component G’ not 
negligible at high 
temperatures 

some 
particles
in contact

filler
bitumen
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T   ffi i   Two new coefficients to 
characterize filler reinforcement 
and aging of binder 
 on the whole T-fr(or t) range

23

Influence of filler: complex reinforcement 
coefficient RM

*

• Introduced to quantify the reinforcement effect of the 
filler on the complex modulus of the masticfiller on the complex modulus of the mastic

• As the Time Temperature Superposition Principle 
(TTSP) holds (or PTTSP), RM

* is defined as the ratio 
between G*

mastic at the equivalent (reduced) frequency fe

and G*
bitumen at the same equivalent frequency:

24

*
*

*

( )
( )

( )
mastic e

M e
binder e

G f
R f

G f
=

* * Mi
M MR R e f=

Tref = +10°C
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Influence of aging: complex aging coefficient 
RA

*

• Introduced to quantify the effect of the binder aging on 
the complex modulus of the binder or masticthe complex modulus of the binder or mastic

• Defined by the ratio between G*
aged at the equivalent 

frequency fe and G*
unaged at the same frequency:

*
* ( )
( ) aged eG f

R f = Tref = +10°C

25

*
( )

( )A e
unaged e

R f
G f

=

Geometrical meaning of RM
* & RA

*

• RM* & RA* give reinforcement information on the 
whole range of temperatures and frequencies

 Powerful indicators to characterize filler and  Powerful indicators to characterize filler and 
aging effects (in VEL domain)

|RA
*|

fM

fA

26

| A |

|RM
*|
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Effect of binder aging

• analyzed with RA
*

• low effect of binder aging• low effect of binder aging
at low temperature

• Reinforcement increases
when decreasing fr

• close coefficients on the
whole range of T and fr

27

Effect of binder aging is nearly
identical whatever the type
and the concentration of filler

Effect of the spread of the grading curve

• 2 coefficients of uniformity:
 filler W100µ: CU = 5.6 WELL-GRADEDfiller W100µ: CU  5.6 WELL GRADED

 filler U100µ: CU = 1.8 UNIFORMLY GRADED

• Close coefficients on the
whole range of T and fr

small effect of the spread of

28

p
the grading curve of filler
on the whole range of
temperatures & frequencies
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Effect of the nature of the filler: 30%, 50%

• 2 natures of fillers with close coefficient of uniformity:
 Limestone (LS)Limestone (LS)

 Diorite (D)

• Very close values at low
temperature

• Close phase angles

29

small effect of the nature of
the filler at
low temperatures

Effect of filler size: “traditional” fillers

• 2 filler size with close coefficients of uniformity CU:
 W100µ: d ~ 100 µmW100µ: dmax  100 µm

 W10µ: dmax ~ 10 µm

• Very close values at low
temperature for the 3
concentrations

30

small effect of the filler size
@ low temperatures 
and/or high frequencies

Not true for ultra fine particles filler
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 W100µ : well-graded 100 µm
 U100µ : uniformly-graded 100 µm
 W10µ : well-graded 10 µm

SEB (Scanning Electron 
Microscope, in alcohol)Effect of filler size: “Ultra Fine” fillers

 S : (silica fume)
 Wrec100µ : 1/3 of W100µ, 1/3 of W10µ and 1/3 of S
 D : diorite

500 nm

CU = 5.1

CU = 5.6

CU = 1.8

CU = 8.3
Patent ENTPE/TOTAL

Effect of UF @ 40%: RM
* (Tref = 10°C)

 High temperature : large increase of stiffness with UF particles 
; lower phase angle

 Low temperature : low effect of filler type

UF
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Filler effect: conclusion
• Filler effect increases when:

 decreasing frequencies or increasing temperature

 increasing filler content

• Small effect of the spread of the grading curve on the 
whole range of T and fr

• At low temperatures and/or high frequencies small 
effect of the filler size. 

• In the high-temperature and/or low frequency region 
small effect of the filler size for traditional filler  

33

high increase of the complex modulus with UF 
particles & decrease of the phase angle (“less viscous”)

• Small effect of the nature of filler

• Ultra-Fine fillers  interesting improvement

Modelling VEL properties

• From binder to mastics (& mixes)

• Rheological model 2S2P1D

• 1Dim & 3Dim

34
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Prediction of the mastic & mix VEL 
behavior from binder

No model needed

35

No model needed

Link in the Linear Viscoelastic domain 

Log 

5

Log 

3

Link?

36

Binder mastic or mix

LVE

Log(N)
1    2     3

-5

LVE

Log(N)
1    2     3

-3
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Prediction of the mastic or mix VEL behaviour 
from binder : complex modulus (1D)

0_mix* *
mix 00_mix binder

0 binder

E
E ( , ) E E (10 , )

E
T T  

translation
*mix,T)

E2

0_binder
3 constants

37

*binder,T)
E1

E0_binder E0_mix
E00_mix

**
0000

( ) E( ) mix mixE ii    

Prediction of the mastic or mix VEL 
behaviour from binder : Poisson’s ratio

00 _00

0 00 0 _ 00 _

( )( )

E
mix mix

mix mixE 


 

• 5 constants to obtain the 3D mix behaviour 
from the binder one (Isotropic hypothesis)

2 constants

38

from the binder one (Isotropic hypothesis)

 No model needed

• Verified by 2S2P1D (and DBN) if 6 
parameters are the same for binder and mix
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prediction from 
bitumen dataPrediction

(from 
transformation)

mix data3 constants
E00

E0



39

2S2P1D model  (2 Springs, 2 
Parabolic elements & 1 Dashpot) Parabolic elements & 1 Dashpot) 
for binders, mastics & mixes 

• LVE model with continuous spectrum

40

• 1 Dim & 3 Dim

Di Benedetto & al. 2004, 2007,..
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Modeling: 2S2P1D model (1 dim)

• Generalizat. of Huet-Sayegh model

• 7 constants:

( ) hF t at=

Creep function

* ( )
( )

( 1)

hi
E

a h

wt
w

-

=
G +• 7 constants:

 E0 glassy modulus (→∞)

 E00 “static” modulus (→0)

 linked to viscosity 
 k, h,  : form parameters

  : time constant, function of

the temperature

9
constants

41

the temperature

if the TTSP holds,
t(T)=t0 . aT(T)

* 0 00
2 2 1 00 11 ( ) ( ) ( )S P D k h

E E
E E

j j jd wt wt wbt- - -

-
= +

+ + +WLF law:
C1 & C2

• For mixes, mastics and bitumens

2S2P1D (1 dim)

k
h

E0-E00

E00



Cole-Cole curve 
 explanation of 
the 7 constants

E0
 (shape)

42

E00

(position) 
[Temperature]
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2S2P1D in 3 dimension (isotropic case)  
(Di Benedetto et al, 2007)

* 0 00
00 k h 1

E E
E ( ) E

1 ( ) ( ) ( )
i

i i i


     


 
  

* 0 00
00 k h 1

( )i
 

  


 

 

k 

 E0-E00

modelling of binders, mastics & mixes

E00, E0 00, 0  h, k & time-temperature 
superposition principle (C1 & C2) 

 11 constants

00 k h 11 ( ) ( ) ( )i i i         
00 & 0

43

E00 

 

h 

allows the introduction of a prediction 
formula providing the mix complex 
modulus and mix Poisson’s Ratio from 
binder ones (shown previously)

Examples of simulations : 2S2P1D & 
link between binder and mix 

44
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Influence of the filler concentration

5 t t t

Material G G k h   

5 constant parameters:
k, h, 
and C1 & C2 of WLF law

fixed by the binder

45

Material G00 G0 k h  0 
B5070 0 9.00E+08 0.21 0.5 2.3 8.00E-05 400

B5070LSU100µ30 0 3.90E+09 0.21 0.5 2.3 5.00E-05 400

B5070LSU100µ40 150 5.70E+09 0.21 0.5 2.3 1.00E-04 400

B5070LSU100µ50 350 8.50E+09 0.21 0.5 2.3 9.00E-05 800

B5070LSU100µ55 1500 1.15E+10 0.21 0.5 2.3 8.00E-05 1000

Mix 5070 6E+07 1.4E+10 0.21 0.5 2.3 7E-02 ∞

Influence of the aging of binder Tref = +10°C

46

Material
G0

0
G0 k h  0 

B5070 0 9.00E+08 0.21 0.5 2.3 8.00E-05 400

B5070A 0 9.00E+08 0.21 0.5 3 4.00E-04 3000
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Influence on 2S2P1D constants (bitumens
and mastics)

• Aging

• Filler contant• Filler contant

• Grading

Ageing Filler content Grading

aT very low no no

G0 no high very low

G00 no high no except S

k no no no

47

k no no no

h no no no

 very low no no

0 very low low low except S

 high medium low except S

2S2P1D in 3Dim (isotropy)
• 2 constants fo *: 0 et 00

 0 = * value at frequency, fr  
 00 = * when fr  0

Mastic at 32%

00 = 0.49 

48

0 = 0.36 
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2S2P1D in 3Dim (isotropy)

Pure bitumen B5070

00 = 0.5 

49

0 = 0.35 

2S2P1D model: conclusion

• Good fittings for all the tested materials on the whole 
range of temperatures and frequenciesrange of temperatures and frequencies

• Among the 9 constants, 5 are given by the pure bitumen 
(in particular  aT )

• Newtonian viscosity (linked to b ) allows to simulate the 
ff  f bi d  i

50

effect of binder aging

• 3 Dim modeling
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Example of advanced experimental p f p
investigation in fatigue at ENTPE

• Binders & mastics

51

ASR device

New fatigue test protocol conclusion

• Rational approach to characterise “VEL” fatigue (whole 
fr)fr)

• Identification of  different phenomena : heating, 
thixotropy, “true” fatigue

• At present : use of US wave propagation

59
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Merci

Thank You

60

Hervé Di Benedetto
ENTPE/CNRS
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