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Computational models of asphalt composites are increasingly being 
used to: 

• investigate relationship between constituent and mixture properties 

• predict damage evolution in composites 

• optimize mix design using virtual testing 
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While these micromechanical computational models may vary in 
length scale (e.g. mastic, mortar, or mixture) or technique (e.g. 
FEM or DEM), there are some elements that are common to most of 
these models 
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Typical approach to characterize binder / matrix 

Creep-recovery / Time sweep / 
Amplitude sweep   

Power Law  

Prony Series  
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✔

Investigate linear and non-linear viscoelastic behavior of binders in 
typical torsion shear tests with emphasis on: 

•  sources of non-linear viscoelastic response 

•  constitutive equations that can be used to model this response 

•  Creep and Recovery at different stress levels 

•  Cyclic Loading (Stress Amplitude Sweep) 

•  Cyclic Loading (Time Sweep at Different Stress Amplitudes) 
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Tests 

Materials 

Selecting the stress levels 

•  Several studies have investigated local stresses within the mixture 

•  Binder can experience stresses that are approximately 80 to 100 times 
the far field stresses 

•  The applied stresses therefore reflect localized stresses when the 
applied far-field stresses are of the order of 1.5 kPa (30 psi) 
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Loading = 5 seconds 
Unloading = 1000 seconds 

τ =1 kPa 

τ =5 kPa 
τ =10 kPa 

τ =20 kPa 
τ =40 kPa 

The response was mostly linear even at higher stress levels 
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Stress Amplitude (kPa) 

Modulus at the End of Each Stress Level - PG 82-22 

Two possible sources of non-linearity were investigated 
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Recall that the response 
was mostly linear in the 
creep-recovery test 

Two possible sources of non-linearity were investigated 
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Two possible sources of non-linearity were investigated 

1.  Inherent material non-linearity – Modulus is a function of 
stress (e.g. E = fn(σ) or G = fn(τ)) 

2.  Interaction non-linearity – Modulus changes due to 
interaction of shear and normal stresses 

Why interaction non-linearity in a shear test? 

An important attribute from torsion shear tests is the normal stress 
developed in the specimen during the test 

τ	
 τ	

σ	


Interaction non-linearity 

Ref: Knauss et al.  
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Normal force developed in a typical amplitude sweep test 
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The normal force is due to the constrained geometry and the 
tendency of the material to expand due to (i) high strains and (ii) 
inherent tendency to dilate 
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The presence of high normal stresses implies the true shear stresses 
in the specimen have to be corrected before any analysis 
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G* vs. stress amplitude 
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G* vs. stress amplitude 

After correction 

G* vs. stress amplitude 
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G* vs. stress amplitude 
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After correction 

We need to incorporate the following: 

1.  The dilatation or first normal stress when the matrix is 
subjected to shear stresses  

There are models available for this, e.g. Rivlin’s model and its 
variations that describe first normal stress as a function of 
shear strain rate and shear stress 

2.  The non-linearity accounting for interaction between the normal 
and shear stresses 
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Schapery’s non-linear model is well suited for this case 

Integral constant (the time 
of interest, t) in Boltzmann 
integral 

Time variable (τ) in 
Boltzmann integral 

Shift factor; modulate (Shrink or 
Expand) time, based on the 
TSSP (similar to TTSP) 

t – τ  

Schapery’s non-linear model is well suited for this case 

gi ’s are material parameters that are dependent on the octahedral 
shear stress 
Pure dependence on octahedral shear stress and path independence is 
currently being verified 
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Calibration Step 1 
Linear viscoelastic 
properties from creep test 
(power law) 
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Step 2 
Linearity was verified by 
using superposition and 
comparing results to 
creep-recovery at higher 
stress levels 
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Calibration 
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Step 3 
Superposition was used 
with the power law 
parameters to compare 
response under dynamic 
loading 

Predicted 
dynamic 
response using 
creep recovery 
parameters 
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Step 4 
Non-linear parameters 
were obtained using 
creep-recovery response 
at different levels of 
interaction 
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(Partial) Validation 
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Step 5 
Non-linear parameters 
were used along with 
power constants and 
modified superposition to 
predict response under 
dynamic loading 

Predicted 
dynamic 
response using 
creep recovery 
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Predicted 
dynamic 
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Constrained geometry in torsion shear testing can result in very 
high normal stresses due to high strain and dilatation 

Dilatation is well recognized in asphalt mixtures, but it also exists 
in asphalt binders (as well as mastic and mortars) 

A combination of normal and shear stress results in interaction 
nonlinearity which may increase or decrease stiffness of the 
binder and give the impression of damage (loss in modulus) 
– this may be considered while interpreting test results  

Constitutive models are available to account for dilatation and 
interaction non-linearity (e.g Scahpery’s NLVE model) – this 
may be important to improve accuracy of computational 
models 

Thanks! 


