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Computational models of asphalt composites are increasingly being
used to:

sinvestigate relationship between constituent and mixture properties
spredict damage evolution in composites

*optimize mix design using virtual testing




Background

While these micromechanical computational models may vary in
length scale (e.g. mastic, mortar, or mixture) or technique (e.g.

FEM or DEM), there are some elements that are common to most of
these models
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Objectives

Creep-recovery / Time sweep / Obtain model Input to computational
Amplitude sweep parameters model

" Power Law
Performance
. prediction

, Prony Series

Material
characterization

Typical approach to characterize binder / matrix
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Objectives

Investigate linear and non-linear viscoelastic behavior of binders in
typical torsion shear tests with emphasis on:

 sources of non-linear viscoelastic response

 constitutive equations that can be used to model this response

Tests

» Creep and Recovery at different stress levels
* Cyclic Loading (Stress Amplitude Sweep)

» Cyclic Loading (Time Sweep at Different Stress Amplitudes)




Test

Materials

PG 82-22
PG 76-22

Tests

= Creep and Recovery at different stress levels:
Creep (loading): 5 Sec.
Recovery (unloading): 1000 Sec.
Stress level: Ranged from 100 Pa - 60 kPa

m  Cyclic Loading (Stress Amplitude Sweep):
Freq.: 0.1 Hz
Amplitude Range: 1kPa — 48 kPa

m  Cyclic Loading (Time Sweep at Different Stress Amplitude):
Freq.: 0.1 Hz
Amplitude Range: 1kPa — 48 kPa

Test

Selecting the stress levels

» Several studies have investigated local stresses within the mixture

* Binder can experience stresses that are approximately 80 to 100 times
the far field stresses

» The applied stresses therefore reflect localized stresses when the
applied far-field stresses are of the order of 1.5 kPa (30 psi)
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The response was mostly linear even at higher stress levels
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Amplitude Sweep

Modulus at the End of Each Stress Level - PG 82-22
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Two possible sources of non-linearity were investigated
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Amplitude Sweep
Modulus at the End of Each Stress Level - PG 82-22
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Recall that the response Stress Amplitude (kPa)

was mostly linear in the
creep-recovery test

Two possible sources of non-linearity were investigated
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Analysis

Two possible sources of non-linearity were investigated

1. Inherent material non-linearity — Modulus is a function of
stress (e.g. E = #»(0) or G = £x(1))

2. Interaction non-linearity — Modulus changes due to
interaction of shear and normal stresses
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Why interaction non-linearity in a shear test?

An important attribute from torsion shear tests is the normal stress
developed in the specimen during the test

Analysis
Interaction non-linearity
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Analysis
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Normal force developed in a typical amplitude sweep test

The normal force is due to the constrained geometry and the
tendency of the material to expand due to (i) high strains and (ii)
inherent tendency to dilate
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The presence of high normal stresses implies the true shear stresses
in the specimen have to be corrected before any analysis
Modulus at the End of Each Stress Level - PG 82-22
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Analysis

Modulus at the End of Each Stress Level - PG 82-22
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Analysis
Modulus at the Each Stress Level - PG 76-22
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Analysis

Complex Shear Modulus (Pa)

Modulus at the Each Stress Level - PG 76-22
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Constitu
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ve equation

We need to incorporate the following:
1.

The dilatation or first normal stress when the matrix is
subjected to shear stresses

There are models available for this, e.g. Rivlin’s model and its
variations that describe first normal stress as a function of
shear strain rate and shear stress

The non-linearity accounting for interaction between the normal
and shear stresses
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Constitutive equation

Schapery’s non-linear model is well suited for this case
'~ d o(Tt)H(T
e(t,0) = Doo(t)H(t)+g1fD( t—1 ){ [ (DH( )]}d‘c

dt

0-
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Constitutive equation
Schapery’s non-linear model is well suited for this case

P d g, - H
e(t,0) =&D00(t)H(t) +Ef D(y - w’){wldr
G- —

dt

g;’s are material parameters that are dependent on the octahedral
shear stress

Pure dependence on octahedral shear stress and path independence is
currently being verified
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Calibration

Strain (%)

Time (seconds)

Step 1
Linear viscoelastic

properties from creep test
(power law)

Univ

Cos

equation

Calibration

Strain (%)

® % Strain - Creep and recovery
® Predicted creep and recovery based on creep at 100Pa
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Step 2

Linearity was verified by
using superposition and
comparing results to
creep-recovery at higher
stress levels
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Costiuive equation

Calibration Step 3
Superposition was used

with the power law
parameters to compare
response under dynamic

® Predicted strain using creep data
® Measured strain

loading
=z Predicted
B dynamic
2 response using

creep recovery

parameters
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Constitutive equation
—e— Shear Stress kPa Step 4

Non-linear parameters
were obtained using
creep for nlve parameters creep-recovery response
at different levels of
interaction

-®— Normal Force

Shear Stress kPa
Normal Force N
urens %
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Costue equation

—— Shear Stress kPa Step 4
Non-linear parameters
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Constitutive equation
(Partial) Validation Step 5
Non-linear parameters
were used along with

®  Predicted strain using creep data

® Measured strain
Predicted strain using NLVE corrections from creep under normal force

power constants and
modified superposition to
predict response under
dynamic loading

*

Predicted
dynamic
response using
creep recovery +
NLVE
parameters

Strain (%)

Predicted
dynamic
response using
creep recovery
2 parameters

Time (seconds)
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Conclusions

Constrained geometry in torsion shear testing can result in very
high normal stresses due to high strain and dilatation

Dilatation is well recognized in asphalt mixtures, but it also exists
in asphalt binders (as well as mastic and mortars)

A combination of normal and shear stress results in interaction
nonlinearity which may increase or decrease stiffness of the
binder and give the impression of damage (loss in modulus)
— this may be considered while interpreting test results

Constitutive models are available to account for dilatation and
interaction non-linearity (e.g Scahpery’s NLVE model) — this
may be important to improve accuracy of computational
models

ironm ental Engineering
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