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Why Model Rheological Behavior?

 Provide rational parameters that can be used to: 
• Explain and understand behavior of bitumen
• Describe and/or predict the aging process
• Provide rational parameters for use in the 

development of specifications
• Link binder and mixture behavior    

 Different applications may justify different model



Historical - Application to Specifications 

 PIR&B (Pfeiffer and van Doormaal, 1936
• Ring and ball and pen

 PIlogPen (Huekelom and Klomp, 1964)
• Slope of log pen vs temperature

 PVN (McLeod, 1972)
• Pen at 25°C and viscosity at 60 or 135 60°C

 VTS (Puzinauskas) 
• Viscosity at 60 and 135 60°C



What Was Lacking in These Models?

 Provided point measurements
• Did not provide mechanism for interpolation
• Based on empirical measurements
• Confounded time and temperature effects

 Significant but under appreciated development
• Van der Poel’s nomograph
• Based on empirical measurements
• Lacking in accuracy
• Model never given in explicit form



Discrete Models

 Based on springs, dashpots, sliders, and other 
mechanical analogs 

 Examples range from simple Maxwell model to 
multi-element Prony series 

 Mathematically elegant and relatively easy to 
manipulate but
• Elements/models lack a sense of intuitiveness
• Such models are poor candidates for 

predicting aging or for relating to composition



Continuous Models

 Continuous function that defines the mastercurve 
and contains:
• Minimal number of model parameters
• Parameters that have a rational explanation
• Parameters that can be related to binder 

composition and a molecular model 
• Parameters that can be related the aging 

process
• Parameters that are useful in specification 

development
 Number of early examples in literature



Early Continuous Models

 Jongepier and Kuilman 
• Relaxation spectra as log normal distribution

 Dobson (1969)
• Based on empirical relationships between 

modulus and phase angle
 Dickenson and DeWitt (1974)

• Based on hyperbolic representation
• Recognized relaxation spectra skewed



Christensen-Anderson LVE Model

 Original  motive was to provide SHRP 
specification criteria for unmodified asphalt 
binders
• Approach was discontinued in favor of point 

parameters such as G*/sinδ, S(60s), etc.
 Based on the observation that the relaxation 

spectrum is a skewed function of time 
• Skewed logistic function gave best “fit”

 All other rheological functions can be generated 
from relaxation spectrum



Skewed Logistic Function

F(x) = Probability density function 
m = Skewness parameter
x = Independent parameter 
b = Scale parameter
a = Location parameter
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Through integration obtain cumulative distribution function



CA Model for G*(ω)

 Substituting rheological parameters:

G*(ω) = Measured complex modulus
Gg = Glassy modulus
R = Rhelogical Index (shape factor)
ω = Test frequency
ωc = Crossover frequency (location 

parameter)
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Graphical Representation



CA Model for δ(ω)

 Rewriting and substituting rheological 
parameters:
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δ(ω) = Measured phase angle



Time-Temperature Dependency

 Dependency above and Below Tg must be 
characterized with different algorithm

 WLF gives good results above Tg

• Based on free volume concepts
 WLF not applicable below Tg due to physical 

hardening
• Free volume is changing with time
• Arrhenius gives better results

 Time-temperature dependency must consider Tg



Short-cut Estimation of R and ωc

 Full mastercurve is not needed to estimate 
model parameters
• Shortcuts are especially useful in following 

aging studies where resources for full 
generation of mastercurve is impractical



η* vs. (1- δ/90°)1.5 gives η0 

Extrapolation to 
determine η0



Log ω vs. log tanδ gives ωc



Log log Gg/G* vs. Log tan δ



|G*| and  Interrelation



Changes in R and ωc with Aging

 Change in R reflects change in time dependency 
and relaxation spectrum
• Mastercurve flattens with aging
• R increases

 Change in ωc reflects change in position of 
mastercurve
• Mastercurve shifts to longer times or smaller 

frequencies
• Reflects increase in η0



Change in Mastercurve with Aging
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Should In-Service Changes in S and m
Be Indicative of Performance?

 Crossover frequency

 R - valueMastercurve shape 
as function of PI



Does It Work?  Qualified Yes!

 Model was developed for unmodified binders
• Model works well for unmodified binders if 

phase angle is less than approximately 70°
• Need modification to better describe MC as 

approach 90°
 Model breaks down for modified binders at 

upper range of application temperatures
• Elasticity of elastomeric modifiers disrupts 

shape of mastercurve
• Need modification for modified materials



CA Model - Discussion

 CA model based on the assumption that the 
relaxation spectrum is a logistic function

 The model provides simple expressions for |G*| 
and 
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|G*| and  Interrelation
 Booij and Thoone demonstrated that the real and 

imaginary parts are inter-related according to Kramers-
Kronig functions; when applied to viscoelastic materials, 
under certain conditions, the Kramers-Kronig functions 
can be approximated by the following simple equations:
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Relaxation Spectrum Approximation
 According to Williams and Ferry, the relaxation 

spectrum can be approximated as follows:

where G’ is the storage modulus and m is the estimated 
negative slope of H() on a double logarithmic plot.

 Booij and Palmen applied equation 4 to equation 5 and 
obtained the following approximate expression
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Relaxation Spectrum Approximation
 This can be further approximated to:

    1/τω2δsin|G*|
π
1τH 



CAM Model

 CA model modified to improve fitting in the lower and 
higher zones of the frequency range
 Authors applied Havriliak and Negami model to the 

|G*| resulting in the following expression:

 New parameter w describes how fast or how slow the 
phase angle data converge to the two asymptotes as 
frequency goes to zero or to infinity

 E.g., as frequency approaches zero, w > 1 characteristic 
of bitumen that reaches 90 degrees asymptote faster 
than a bitumen with w < 1
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CAM Model



CAM Model

 Note that Leuseur used Havriliak and Negami model to 
represent the complex viscosity of bitumens

 By plotting data in Black space, he showed that not all 
bitumens are thermorheologically simple
 This was noted previously where vertical shift factors 

were used in conjunction with the CA model and the 
vertical shift factors were related to wax content

 This was also noted when using CAM model
 Many models fit G” and G” simultaneously



Thermorheological Simplicity 

 A linear viscoelastic material is thermorheologically 
simple if all characteristic functions (retardation, 
relaxation spectra, etc) meet the same time-
temperature dependency

 Further developed by Ferry based on two assumptions:
 Moduli are proportional to the product of 

temperature and density
 Relaxation times depend on a single monomeric 

friction coefficient 
 First condition implies that G”/ G', which represents the 

tangent of the phase angle, is independent of 
temperature and density



Thermorheological Simplicity 

 Accordingly, the proper technique for generating master 
curves is to first superimpose the phase angle data to 
generate a set of horizontal shift factors

 |G*| data is then shifted with these horizontal shift 
factors and the vertical shift factors, if any, are 
determined by obtaining a smooth |G*| master curve 



Semi-empirical model 
 Christensen et al. (2003) proposed semi-empirical model  to 

estimate extensional and shear dynamic modulus

Using Models to Obtain Mixture Properties 
from Binder Properties (and vice-versa)
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Hirsch model for PG 58-34 M1 mixtures T=-24ºC

Forward Problem – Hirsch Model
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 2S2P1D Model (Olard and Di Benedetto, 2003)

Analogical  Models

E* complex modulus,
E∞ glassy modulus, ωτ→∞
E0 static modulus, ωτ→0
h, k exponents such that 0<k<k<1
δ dimensionless constant,
β dimensionless parameter for the linear dashpot
ω 2π*frequency,
τ characteristic time varying with temperature
t time 
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No analytical expression for creep compliance in the time domain for this model.



 2S2P1D Model (Olard and Di Benedetto, 2003)
 Each mixture had the same parameters δ, k, h and β of the 

associated binder while only the static and glassy modulus (E0
and E∞) and τ0 seemed to be binder and mixtures specific

 The values of E0 and E∞ for the mixtures were in the range of 250 
to 1050MPa and 41500 to 45400MPa respectively

 Simple regression of the characteristic time of the mixture on the 
characteristic time of the corresponding binder at the reference
temperature in log scale the authors found that:

Analogical  Models

)(10)( TT bindermix  

α regression coefficient depending on mixture and aging.



 2S2P1D Model (Olard and Di Benedetto, 2003)
 From the 2S2P1D model a relationship between the binder 

and the mix complex moduli was proposed. The expression 
is independent of the rheological model used to construct it.
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E*
mix complex modulus of the mixture,

E*
binder complex modulus of the binder,

E∞mix glassy modulus of the mixture,
E0mix static modulus of the mixture,
E∞binder glassy modulus of the binder,
E0binder static modulus of the binder,
T temperature,
ω 2π*frequency,
α regression coefficient depending on mixture and aging.



Huet Model ((Huet, 1963) 

D(t) creep function
E* complex modulus,
E∞ glassy modulus,
h, k exponents such that 0<k<h<1
δ dimensionless constant,
ω 2π*frequency,
τ characteristic time varying with temperature
t time 
Γ gamma function:
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Huet model for PG 58-34 M1 mixtures T=-24ºC

Forward Problem – Huet Model
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Huet model parameters for four binder and corresponding 
granite mixture 

Forward Problem – Huet Model

Material δ k h E∞(MPa) Log(τ) 

Binder 

58-34:M1 2.42 0.18 0.60 3000 0.251 
58-34:M2 4.18 0.22 0.62 3000 0.497 
64-34:M1 3.50 0.21 0.64 3000 0.387 
64-34:M2 3.99 0.23 0.64 3000 0.328 

Mixtures 

58-34:M1:GR 2.42 0.18 0.60 28000 3.420 
58-34:M2:GR 4.18 0.22 0.62 30000 3.675 
64-34:M1:GR 3.50 0.21 0.64 30000 3.547 
64-34:M2:GR 3.99 0.23 0.64 29001 3.523 
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 Based on the strong linear correlation found (R2=0.98-
0.99 for all the binders-mixtures), the following 
expression can be written to relate the characteristic 
time of the binders and corresponding mixtures with 
similar mix designs: 

Forward Problem – Huet Model

bindermix  10

τbinder characteristic time of binder,
τmix characteristic time of mixture,
α regression parameter, may depend on mix design



Forward Problem – Huet Model

Dmix(t) creep compliance of mixture,
Dbinder(t) creep compliance of binder,
Smix(t) creep stiffness of mixture,
Sbinder(t) creep stiffness of binder,
E∞_mix glassy modulus of mixture,
E∞_binder glassy modulus of binder,
α regression parameter which may depend on mix design,
t time
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Hirsch model for PG 58-34 M1 mixtures T=-24ºC

Inverse Problem– Hirsch Model
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Based on the findings of Forward Problem:

Inverse Problem – Huet Model

mixbinder  10
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Smix(t) creep stiffness of mixture,
Sbinder(t) creep stiffness of binder,
E∞_mix glassy modulus of mixture,
E∞_binder glassy modulus of binder,
α regression parameter which may depend on mix design,
τbinder characteristic time of binder,
τmix characteristic time of mixture,
t time.



Huet model for PG 58-34 M1 mixtures T=-24ºC

Inverse Problem – Huet Model
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