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| Why Model Rheological Behavior?

> Provide rational parameters that can be used to:
« Explain and understand behavior of bitumen
» Describe and/or predict the aging process

* Provide rational parameters for use in the
development of specifications

 Link binder and mixture behavior
> Different applications may justify different model




| Historical - Application to Specifications

> Plgqs (Pfeiffer and van Doormaal, 1936
* Ring and ball and pen
> Pliggpen (Huekelom and Klomp, 1964)
 Slope of log pen vs temperature
> PVN (McLeod, 1972)
* Pen at 25°C and viscosity at 60 or 135 60°C
> VTS (Puzinauskas)
* Viscosity at 60 and 135 60°C




| What Was Lacking in These Models?

> Provided point measurements
 Did not provide mechanism for interpolation
« Based on empirical measurements
» Confounded time and temperature effects

> Significant but under appreciated development
 Van der Poel’'s nomograph
e Based on empirical measurements
 Lacking in accuracy
* Model never given in explicit form




| Discrete Models

> Based on springs, dashpots, sliders, and other
mechanical analogs

> Examples range from simple Maxwell model to
multi-element Prony series

» Mathematically elegant and relatively easy to
manipulate but

 Elements/models lack a sense of intuitiveness

» Such models are poor candidates for
predicting aging or for relating to composition




| Continuous Models

> Continuous function that defines the mastercurve

and contains:

* Minimal number of model parameters

Parameters that can be re
composition and a molecu

« Parameters that can be re
Nrocess

development

Parameters that have a rational explanation

ated to binder
ar model

ated the aging

« Parameters that are useful in specification

> Number of early examples in literature




| Early Continuous Models

» Jongepier and Kuilman
» Relaxation spectra as log normal distribution
> Dobson (1969)

« Based on empirical relationships between
modulus and phase angle

> Dickenson and DeWitt (1974)
« Based on hyperbolic representation
« Recognized relaxation spectra skewed




| Christensen-Anderson LVE Model

> Original motive was to provide SHRP
specification criteria for unmodified asphalt
binders

» Approach was discontinued in favor of point
parameters such as G*/sind, S(60s), etc.

> Based on the observation that the relaxation
spectrum Is a skewed function of time

» Skewed logistic function gave best “fit”

> All other rheological functions can be generated
from relaxation spectrum




.| Skewed Logistic Function
—(m+1)
F(x):%exp{x;a}{l+ exp{x;aH

F(x) = Probability density function
m = Skewness parameter
X = Independent parameter
b = Scale parameter
a = Location parameter

Through integration obtain cumulative distribution function

Vo e e {1+ exp{x;aH




| CA Model for G*(w)

> Substituting rheological parameters:
—R/log?2

-

i

(log2/R) |
G*(w) = G, 1+<wﬁ>
Siintr( 6129

G*(w) = Measured complex modulus
G, = Glassy modulus
R = Rhelogical Index (shape factor)
w = Test frequency

w. = Crossover frequency (location
parameter)




,| Graphical Representation
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| CA Model for o(w)

> Rewriting and substituting rheological

parameters:

o(w)= 90/

]+

;

(log2)/R |

o(w) = Measured phase angle




| Time-Temperature Dependency

» Dependency above and Below T, must be
characterized with different algorithm

> WLF gives good results above T,
« Based on free volume concepts

> WLF not applicable below T, due to physical
hardening

* Free volume Is changing with time
* Arrhenius gives better results
» Time-temperature dependency must consider T,




| Short-cut Estimation of R and w,

> Full mastercurve IS not needed to estimate
model parameters

« Shortcuts are especially useful in following
aging studies where resources for full
generation of mastercurve is impractical




| n* vs. (1- 8/90°)'> gives n,
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‘| Log w vs. log tano gives w,
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,| Log log G,/G™* vs. Log tan O
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|G*| and & Interrelation

Master curve slope
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| Changes in R and w, with Aging

> Change In R reflects change In time dependency
and relaxation spectrum

« Mastercurve flattens with aging
* R increases

> Change In w, reflects change in position of
mastercurve

« Mastercurve shifts to longer times or smaller
frequencies

 Reflects increase in ng




,| Change in Mastercurve with Aging
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Log Stiffness Modaus, Pa

Mastercurve shape
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| Does It Work? Qualified Yes!

> Model was developed for unmodified binders

* Model works well for unmodified binders if
phase angle is less than approximately 70°

 Need modification to better describe MC as
approach 90°

> Model breaks down for modified binders at
upper range of application temperatures

« Elasticity of elastomeric modifiers disrupts
shape of mastercurve

 Need modification for modified materials




CA Model - Discussion

> CA model based on the assumption that the
relaxation spectrum is a logistic function

> The model provides simple expressions for |G*|
and &

G*@)| = G, [1+(@, / @) R ™0

d(w) = 90 /[1+ (o, /) "]




|G*| and & Interrelation

> Booij and Thoone demonstrated that the real and
imaginary parts are inter-related according to Kramers-
Kronig functions; when applied to viscoelastic materials,
under certain conditions, the Kramers-Kronig functions
can be approximated by the following simple equations:

Gy 2 "[dG”(u)j (1)
2 dIn(u) )
oo« (i

olw) =

n({dIn|G*()|
(3)

2 d In(u)




Relaxation Spectrum Approximation

> According to Williams and Ferry, the relaxation
spectrum can be approximated as follows:

H(’C) & sinmn/Z{G,dlnG’_

mi/2 dlnw |

o=l/t

(5)

where G' is the storage modulus and m is the estimated
negative slope of H(t) on a double logarithmic plot.

> Booij and Palmen applied equation 4 to equation 5 and
obtained the following approximate expression

sin 20 25 i d1ncoss |

H = G*
(T) 20 el T dInw

-

o=/t




Relaxation Spectrum Approximation

> This can be further approximated to:

H(z) = a3 | G*| sin 28]
T

=1/t
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CAM Model

> CA model modified to improve fitting in the lower and
higher zones of the frequency range

= Authors applied Havriliak and Negami model to the
|G*| resulting in the following expression:

\W%

G E ) =56 o By ] ¢
) = Ow/[l+(ow,/ ®)"]

> New parameter w describes how fast or how slow the
phase angle data converge to the two asymptotes as
frequency goes to zero or to infinity

> E.g., as frequency approaches zero, w > 1 characteristic
of bitumen that reaches 90 degrees asymptote faster
than a bitumen with w < 1




CAM Model
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CAM Model

> Note that Leuseur used Havriliak and Negami model to
represent the complex viscosity of bitumens

> By plotting data in Black space, he showed that not all
bitumens are thermorheologically simple

= This was noted previously where vertical shift factors
were used in conjunction with the CA model and the
vertical shift factors were related to wax content

= This was also noted when using CAM model
- Many models fit 6" and G" simultaneously




Thermorheological Simplicity

> A linear viscoelastic material is thermorheologically
simple if all characteristic functions (retardation,
relaxation spectra, etc) meet the same time-
temperature dependency

> Further developed by Ferry based on two assumptions:

= Moduli are proportional to the product of
temperature and density

= Relaxation times depend on a single monomeric
friction coefficient

> First condition implies that 6"/ G', which represents the
tangent of the phase angle, is independent of
temperature and density




Thermorheological Simplicity

> Accordingly, the proper technique for generating master
curves is to first superimpose the phase angle data to
generate a set of horizontal shift factors

> |G*| data is then shifted with these horizontal shift
factors and the vertical shift factors, if any, are
determined by obtaining a smooth |G*| master curve




Using Models to Obtain Mixture Properties
from Binder Properties (and vice-versa)

Semi-empirical model

> Christensen et al. (2003) proposed semi-empirical model to
estimate extensional and shear dynamic modulus

Aggregate

Aggreg
Asphalt binder

Asphalt
binder

agg = agg

( p VA Eyii " Pc-contact volume
0
(I8 V4 P,,P,,P,-constants
= +(VFA-Eb,W " VFA-voids fill with asphalt
2

5 -1
bl et onf o ST

Zofka (2007)

propose
VMA VMA- voids between aggregate ‘ﬁqﬁdiﬁ tEﬁﬁ/(ﬁ +0.609




Stiffness S (GPa)

Forward Problem - Hirsch Model
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Hirsch model for PG 58-34 M1 mixtures T=-24°C




Analogical Models

> 2352P1D Model (Olard and Di Benedetto, 2003)

E, —E,

E (iot)=E, + s et f AR =
1+0(iwr) ™" +(iwr) ™" + (iwpfr)

E_- E,
E* complex modulus,
k, 8 Ey E_ glassy modulus, wt—0
E, static modulus, wz—0
h h, k exponents such that O0<k<k<1
0 dimensionless constant,
L b dimensionless parameter for the linear dashpot
0 2n*frequency,
T characteristic time varying with temperature
t time

No analytical expression for creep compliance in the time domain for this model.




Analogical Models

> 2S2P1D Model (Olard and Di Benedetto, 2003)

> Each mixture had the same parameters o, &, 4 and f of the
associated binder while only the static and glassy modulus (£,
and E_) and 7, seemed to be binder and mixtures specific

> The values of £, and E_ for the mixtures were in the range of 250
to 1050MPa and 41500 to 45400MPa respectively

> Simple regression of the characteristic time of the mixture on the
characteristic time of the corresponding binder at the reference
temperature 1n log scale the authors found that:

(T)=10"7,,,,..(T)

Tmix

a regression coefficient depending on mixture and aging.




Analogical Models

> 2S2P1D Model (Olard and Di Benedetto, 2003)

> From the 252P1D model a relationship between the binder
and the mix complex moduli was proposed. The expression
Is independent of the rheological model used to construct it.

E =3

Omix Omix

E;ix (C(),T) = EOmix 31 [EZinder (1006 G),T) 5 EObinder JE

wbinder ~— E Obinder

F5it complex modulus of the mixture,

IS ER complex modulus of the binder,

JoPM0n glassy modulus of the mixture,

Ep: static modulus of the mixture,

Bt glassy modulus of the binder,

Bt static modulus of the binder,

T temperature,

W 2n*frequency,

a regression coefficient depending on mixture and aging.




Huet Model ((Huet, 1963)

Byl slaal g o)
E

T(k+1) T(h+1)

0

Ry o e T T
E 1+0(iowt) ™" +(iwt)

D(t) creep function
E complex modulus,
k, 0 E, glassy modulus,

h, k exponents such that 0<k<h<l
0 dimensionless constant,
h 0 2n*frequency,
T characteristic time varying with temperature
t time
I gamma function:
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Forward Problem - Huet Model

Huet model parameters for four binder and corresponding

granite mixture

Material 0 k h E.(MPa) Log()

58-34:M1 242 0.18 0.60 3000 0.251
58-34:M2 4.18 022 0.62 3000 0.497

Binder 64-34:M1 350 021 064 3000 0.387
64-34M2 399 023 0.64 3000 0.328
58-34:M1:GR 242 0.18 060 28000  3.420

Mixiures S8 34M2GR 418 022 062 30000  3.675
64-34:M1:GR  3.50 021 064 30000  3.547
64-34:M2:GR 399 023 0.64 29001  3.523

k h

D (t) 44 1 1+5(t/z-binder) o (t/z-binder)

binder ~- F k 1 F h 1

o binder ( s ) ( + )

k h
Dmix(t) - l [1+5(t/rmix) + (t/z-mix) J

T(k+1) T(h+1)

0 mix




Forward Problem - Huet Model

> Based on the strong linear correlation found (R%=0.98-
0.99 for all the binders-mixtures), the following
expression can be written to relate the characteristic
time of the binders and corresponding mixtures with

similar mix designs:
RE a
i 10 z-bina’er

mix

sl characteristic time of binder,
.5 characteristic time of mixture,

mix

o regression parameter, may depend on mix design




Forward Problem - Huet Model

= a Eoo_binder
Dmix(t)_Dbinder(t/lo ) E

0 mix

Eoo mix
Smix (t) 7] Sbinder (t/loa) =

o binder
D, .(1) creep compliance of mixture,
D,. .(1) creep compliance of binder,
S, (1) creep stiffness of mixture,
Stinger(t) creep stiffness of binder,
F e glassy modulus of mixture,
Jirg il e glassy modulus of binder,

regression parameter which may depend on mix design,
time

AR




Asphalt Binder Stiffness (MPa)

Tnverse Problem- Hirsch Model
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Inverse Problem - Huet Model

Based on the findings of Forward Problem:

o -
z-bina’er o 10 Z-mix

S - —a Eoo_binder
binder (t) - Smix (t / 10 ) E

0 mix

Six(t) creep stiffness of mixture,

Spinder(t) creep stiffness of binder,

i glassy modulus of mixture,

Bt glassy modulus of binder,

o regression parameter which may depend on mix design,
Ty i) characteristic time of binder,

T characteristic time of mixture,

mix

t time.




AsphaltBinder Stiffness (MPa)

Inverse Problem - Huet Model
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