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N Micromechanics

3 A theory to determine effective properties of composites
from known properties and phase geometry of the constituents of the
composites.

1 Constitutive responses at the mixture-level are estimated in terms
of constituent-level parameters (geometry and properties).

U The effective properties of the idealized homogeneous medium
are typically estimated by using homogenization principles.

1 The homogenization principle is typically applied to the
characteristic dimension of a volume element referred to as the
representative volume element (RVE) which is large enough so
that the estimate of effective properties is independent of the volume
element size: total body responses and RVE responses are the same.



N Concept of Micromechanics

Heterogeneous RVE

55 N Homogeneous RVE

Effective
Medium

Homogenization
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The homogenization process is complicated and requires great care, since rigorous
operation of it needs exact solutions for the stress and strain fields in the composites.
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l\I,\iI Analytical Micromechanics

For Particulate Composites:

1 The pioneering work by Einstein (1906) = linking the effective
viscosity to the particle content of a suspension consisting of
smooth, equal-sized particles.

(1 They are more scientifically-based than empirical methodologies
that usually intend to predict the behavior of the heterogeneous
media based on the statistical analysis of databases which are
sometimes regional and case-specific.

1 Dewey (1947), Kerner (1956), Eshelby (1957), Hashin (1962, 1965,
1970, 1983), Hashin and Shtrikman (1963), Walpole (1966), Hill (1965),
Halpin (1969), Christensen (1969), Christensen and Lo (1979), Nielsen
(1970), Lewis and Nielsen (1970), Roscoe (1972), Mori and Tanaka
(1973), and many more.



INl  Example Analytical Models

Dilute Suspension System (Dewey 1947)
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INl  Example Analytical Models

Kim and Little (2004)
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Our Real Problem is...

> Extremely Complicated Geometry
> Inelastic Constitutive Behavior
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No analytical solution is available
to solve our real problems !




N Computational Approaches

L It is the much better way to account for the complicated
geometry (heterogeneity) and material inelasticity (viscoelasticity)
in a more realistic scale.

3 Applications of Finite Element Method: Masad et al. 2001;
Papagiannakis et al. 2002; Sadd et al. 2003; Soares et al. 2003; Dai
et al. 2005; Aragao et al. 2009; Aragao et al. 2010; etc.

3 Applications of Discrete Element Method: Buttlar and You
2001; Kim and Buttlar 2005; Abbas et al. 2005; You and Buttlar 2004,
2005, 2006; Dai and You 2007; You et al. 2009; etc.



N Modeling Benefits

1 Micromechanical model can provide an analysis/design tool
governed by constituent-level design variables.

] Micromechanics approach accounts for various modeling
complexities (heterogeneity, inelasticity, anisotropy, multiple
damage forms) in a more detailed manner and realistic scale.

1 Micromechanics approach can reduce laboratory experiments
because it merely requires individual mixture constituent
parameters as model inputs.

1 Computationally intensive sometimes, but it can be tied to
multiscale modeling principles to improve computing efficiency.



IN( We will talk about...

Micromechanics Modeling oI AC Mixtures
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N Modeling without Damage
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Heterogeneous RVE
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N RVE Study of AC Microstructure

Mixture Geometric Characteristics
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Geometrical Analysis of AC Mixture Microstructure
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N RVE Study of AC Microstructure

Cut Sample |-»f  Scan Section | Treatment of - Inage
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Sample Plates and Apply Paint and Perform Test
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N RVE Study of AC Microstructure
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N Modeling Framework and Inputs

Oscillatory Torsional Shear Nanoindentation Tests for

Tests for viscoelastic Elastic Properties Digital Iage of
Properties of Matrix of Aggregates Asphalt Concrete Sample
Step 2 Step 3
Characterization of Image Processing for
Component Properties Mixture Microstructure

AN
&

Step 4
Finite Element
Dynamic Modulus Tests Simulations
of Asphalt Concrete &
Fatigue . Rutting
Step 5
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Geomelry

Model Inputs
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Model Inputs: Aggregate Properties

Load (P)
'

Scan Size
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Model Inputs: Aggregate Properties
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Model Inputs: Matrix Propetrties

Bulk Sample

Mix Design of Matrix Phase

> Gradation - mixture gradation excluding coarser
aggregates (white phase: aggregates retained on No.16)

> Binder Content = total binder — binder absorbed by the
coarser aggregates — binder to form thin film (12 um)
coating the coarser aggregates

Compaction Density of Matrix Phase

> Unknown because of unknown air voids in the matrix Kim et al. (2002, 2003, 2004, 2006),
Song et al. (2005), Masad et al. (2008),

0 0 i i i
» Two extreme cases (0%, 4% of air voids) were tried. Castelo et al, (2008), etc. 19



Model Inputs: Matrix Properties

Dynamic Modulus |E*| (Pa)
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Model Inputs: Boundary Conditions

Ty =0, Ty =-0.5 (1-cos2ft)

KTX:O,TY:O
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N Model Outputs: Comparison

Predicted Moduli (Pa)
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Model Outputs: MEPDG
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Micromechanics Modeling ol AC Mixtures

RVE Study of Asphalt Concrete Microstructure

Modeling Framework and Model Inputs

Model Outputs and Comparisons with Test Results
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Modeling Framework 4

Model Inputs and Simulation Outputs

Model Limitations and Challenges




INl  Modeling with Damage
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Heterogeneous RVE
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NI

Homogenized Global Scale

Homogenization:

Modeling Framework

Cohesive Zone
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N

A two-way couple multiscale strategy is adopted to accurately account for
spatial and time dependence due to viscoelasticity and crack evolution.

Modeling Framework

Increment Obtain Global
Increment Time » Boundary 9 Scale Solution
Conditions v
No Update Apply Global
Homogenized Scale Solution
Check Time é Results to to Local Scale
Global Scale Problem
bes Problem *
Stop : Obtain Local
Homogenize é Scale Solution




N Model Inputs

Viscoelastic Matrix

Properties by DMA
Elastic Aggregate N &
Properties by = T,
Nanoindentation yf
0 o .. _ -
physical cohesive
— crack tip crack tip
Cohesive Zone S
Fracture Parameters
“Cohesive Zone” is an “extended crack tip”
Geometry where separation takes place and is resisted by
Considering Mixture cohesive tractions (Ortiz and Pandolfi 1999).
Microstructure >3




Features (Benefits) of CZM
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CZM can physically create multiple cracks in composites simultaneously.
CZM can be applied to various material constitutions under the same concept.

CZM can capture the inelastic fracture phenomena (such as rate-dependency) more
accurately than the traditional fracture mechanics approaches.

CZM eliminates singularity of stress.

CZM is convenient to be implemented into computational techniques (e.g., FEM).

It is an ideal framework to model stiffness, strength, and damage (nucleation-
initiation-propagation) in an integrated manner by the T-A relationship.

Applications: geomaterials, biomaterials, concrete, metals, polymers, etc.




Applications of CZM

4 Hillerborg et al. 1976: ficticious
crack model; concrete

# Bazant et al. 1983: crack band
theory; concrete

% Morgan et al. 1997: earthquake
rupture propagation; geomaterial
# Planas et al. 1991: concrete

% Eisenmenger 2001: stone
fragmentation; brittle-bio materials
# Amruthraj et al. 1995:
composites

# Grujicic 1999: fracture behavior
of polycrystalline; bicrystals

4 Costanzo et al. 1998: dynamic
fracture

# Ghosh 2000: Interfacial
debonding; composites

# Rahulkumar 2000: viscoelastic
fracture; polymers

# Liechti 2001: mixed-mode, time-
dependent rubber/metal debonding

% Ravichander 2001: fatigue

# Tvergaard 1992: particle-matrix
interface debonding

# Tvergaard et al. 1996: elastic-
plastic solid; ductile fracture metals
% Brocks 2001: crack growth in sheef
metal

4 Camacho and Ortiz 1996: impact
% Dollar 1993: Interfacial debonding
ceramic-matrix composites

# Lokhandwalla 2000: urinary stones
biomaterials




1st CZ concept for
perfectly brittle materials

Unified potential-based
CZ model

Various CZMs Developed
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NI

Traction

Viscoelastic CZ Model

Model by Allen and Searcy (2001)

Averaged czZ
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N Model Inputs: CZM Parameters
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N Model Application

Cyclic Loading
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Global Scale i\llatrix Beam /:\

Local Scale
RVE Mesh
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N Model Outputs (Contours)
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N Model Outputs (Node No.1)
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N Model Outputs (Element No.1)
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N Model Limitations/Challenges

Cohesive Zone Modeling of Fracture

(1 Rate-dependent fracture behavior
[ Characterization of mixed-mode fracture properties
[ Characterization and modeling of adhesive (matrix-aggregate interface) fracture

Computational Micromechanics Modeling

O Identification of representative volume elements with cracks
(1 Explicit modeling of air voids

O Other necessary materials constitutive relations
 Implementation of aging and healing

(1 Model validation and calibration

Q) Extension from 2D modeling to 3D simulation
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