Models for Plastic Deformation Based on Non-Linear Response for FEM Implementation

Eyad Masad

Zachry Department of Civil Engineering Texas A&M University, College Station, TX

International Workshop on Asphalt Binders and Mastics Madison, Wisconsin. September 16-17

Acknowledge Funding by

Asphalt Research Consortium

Zachry Department of Civil Engineering TEXAS A&M UNIVERSITY, College Station, TX

Outline

Motivation

Viscoelastic-Viscoplastic-Viscodamage Models

Identification of model parameters and model validation

Implementation procedure

Application of the model for rutting performance simulation

Conclusions and future works

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Motivation

Prediction of pavement performance

Mechanical Response of Asphalt Mixes

Viscoelastic-Viscoplastic-Viscodamage

Mechanical Response of Asphalt Mixes

Viscoelastic-Viscoplastic-Viscodamage

□ Rate- and Time-dependent softening

Displacement control tests

Repeated creep-recovery test

Viscoelastic-Viscoplastic-Viscodamage Models

Viscoelastic Properties

Nonlinear Viscoelastic Model (Schapery, 1969)

Nonlinear contribution in the transient response

 $\varepsilon^{ve} = \underbrace{g_0}_0 D_0 \sigma + \underbrace{g_1}_0^{\psi} D\left(\psi^t - \psi^\tau\right) \frac{d}{d\tau} \underbrace{g_2}_0 \sigma d\tau$

Nonlinear contribution in the elastic response, due to the level of stress

Nonlinear contribution in the viscoelastic response due to the level of stress

Temperature shift factor

 $D = \sum_{n=1}^{\infty} D_n \left[1 - \exp\left(-\lambda_n t\right) \right]$

Prony series coefficients

Retardation time

Viscoplastic Properties

Viscoplastic Model (Perzyna, 1971)

$$\Delta \varepsilon_{ij} = \Delta \varepsilon_{ij}^{ve} + \Delta \varepsilon_{ij}^{vp} \longrightarrow \text{Perzyna Model}$$

$$f = F(\sigma_{ij}) - \kappa(\varepsilon_e^{vp}) = \tau - \alpha I_1 - \kappa(\varepsilon_e^{vp}) \longrightarrow \text{Yield surface} (\text{Extended Drucker-Prager})$$

$$\kappa = \kappa_0 + \kappa_1 [1 - \exp(-\kappa_2 \varepsilon_e^{vp})] \longrightarrow \text{Hardening function}$$
Flow Rule: $\dot{\varepsilon}_{ij}^{vp} = \Gamma^{vp}(T) \langle \Phi(f) \rangle^N \frac{\partial g}{\partial \sigma_{ij}}$
Plastic potential $g = \tau - \beta I_1$
function:
$$g = \tau - \beta I_1$$
Viscoelastic
Viscoelastic
Viscoelastic
Viscoelastic
Viscoelastic
Viscoelastic
Viscoelastic

Extended Drucker-Prager Yield Surface

Accounts for:
Dilation and confinement pressure
The effect of shear stress
Work hardening of the material

Viscoplastic Properties

Effect of parameter "*d*" on the yield surface

$$\tau = \frac{\sqrt{J_2}}{2} \left[1 + \frac{1}{d} - \left(1 + \frac{1}{d} \right) \frac{J_3}{J_2^{3/2}} \right]$$

Influence of stress path on the yielding point

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Strength Degradation due to Damage

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Viscodamage Model

Viscodamage model (Darabi, Abu Al-Rub, Masad, Little; 2010)

Determination of Model Parameters

Determination of Model Parameters

Creep-Recovery test @ reference temperature Separate viscoelastic (recoverable) and viscoplastic (irrecoverable) strains.

Determination of Model Parameters

Stress Levels within the Pavements

Gibson et al., 2010

Model Validation Tests

	Test	Temperature (°C)	Stress Level (kPa)	Loading time (Sec)	Strain Rate (1/Sec)
Compression	Creep-Recovery	10	2000, 2500	300, 350, 400	
		20	1000, 1500	30, 40, 130, 210	
		40	500, 750	35, 130, 180	
	Creep	10	2000, 2500		
		20	1000, 1500		
		40	500, 750		
	Constant strain rate test	10			0.005, 0.005, 0.00005
		20			0.005, 0.005, 0.00005
		40			0.005, 0.005
Tension	Creep	10	500, 1000, 1500		
		20	500, 700		
		35	100, 150		
	Constant strain rate test	20			0.0167, 0.00167

Model Validation

Model Validation (Creep-Recovery Test)

1- Model can predict creep-recovery data at different temperatures and stress levels. (Compression)

 $T = 10^{\circ} C$ $\sigma = 2000 \text{kPa}$ Creep-recovery test Compression $@ T=10^{\circ}C$

Model Validation (Creep-Recovery Test)

1- Model can predict creep-recovery data at different temperatures and stress levels. (Compression)

 $T = 20^{\circ}C$ $\sigma = 1000 \text{kPa}$ $T = 20^{\circ}C$ $\sigma = 1500 \text{kPa}$ Creep-recovery test Compression $@ T=20^{\circ}C$

Model Validation (Creep-Recovery Test)

1- Model can predict creep-recovery data at different temperatures and stress levels. (Compression)

 $T = 40^{\circ} C$

 $\sigma = 500$ kPa

 $T = 40^{\circ} C$ $\sigma = 750 \text{kPa}$

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Model Validation (Creep Test)

2-Model predictions agrees well with creep data at different temperatures and stress levels. Tertiary creep behavior is also captured.

 $T = 10^{\circ} C$

 $T=20^{\circ}C$

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Model Validation (Creep Test)

2-Model predictions agrees well with creep data at different temperatures and stress levels. Tertiary creep behavior is also captured.

Model Validation (Constant Strain Rate Test)

3-Model predicts temperature and rate-dependent behavior of asphalt mixes. Post peak behavior is captured well.

Constant strain rate test Compression Loading rate: 0.005/Sec

Model Validation (Constant Strain Rate Test)

3-Model predicts temperature and rate-dependent behavior of asphalt mixes. Post peak behavior is captured well.

Model Validation in Tension (Creep Test)

4-Model predicts experimental data in tension. Tertiary stage and time of failure are captured well.

Creep test Tension Temperature: 10°C

Model Validation in Tension (Creep Test)

4-Model predicts experimental data in tension. Tertiary stage and time of failure are captured well.

Model Validation in Tension (Creep Test)

4-Model predicts experimental data in tension.

Implementation procedure

Implementation Procedure

Procedure to Run the Performance Prediction Continuum Damage Model

Application of the model for rutting performance simulation

Application for Simulation of Wheel Tracking Test

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Application: Different Loading Cases

Mode	Loading approach	Loading Area	Schematic representation of loading modes
1 (2D)	Pulse loading (plane strain)	One wheel	
2 (2D)	Equivalent loading (plane strain)	One wheel	
3 (2D)	Pulse loading (axisymmetric)	One wheel	
4 (2D)	Equivalent loading (axisymmetric)	One wheel	
5 (3D)	Pulse loading	One wheel	
6 (3D)	Equivalent loading	One wheel	
7 (3D)	Pulse loading	Whole wheel path	
8 (3D)	Equivalent loading	Whole wheel path	
9 (3D)	Pulse loading	Circular loading area	
10 (3D)	Equivalent loading	Circular loading area	KARK I
11 (3D)	Moving loading	One wheel	Moving Direction

Application: Different Loading Modes and Constitutive Models

Application: Different Loading Modes and Constitutive Models

Simplified loading assumptions can be used when using elasto-viscoplastic model.

Simplified loading assumptions should be used carefully when viscoelastic response is significant.

Using simplified loading assumptions causes significant error when the damage level is significant.

Simulation Results

Viscoplastic strain

2D Results

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Simulation Results

Damage evolution

2D Results

3D Results

Zachry Department of CIVIL ENGINEERING TEXAS A&M*ENGINEERING

Compare with Experimental Data

ALF Data-Variable Stress

Applied stress (T=55°C)

> At large loading cycles model predictions using VE-VP deviates from experimental measurements

> This deviation is due to damage and should be compensated using the damage model.

Constant Stress-Variable Time Loading

Conclusions and Future Works

Conclusions:

□ Proposed viscoelastic-viscoplastic-viscodamage model predicts rate-, time-, and temperature-dependent behavior of asphalt mixes in both tension and compression.

□ Model can be used to predict performance simulations.

Challenges and future works:

□ Including healing to the model.

□ Including environmental effects such as aging and moisture induced damage to the model.

□Validating the model over an extensive experimental measurements.

Performing performance simulations in pavements.

