Oxidation and Kinetics of Aging in Asphalt Binders (and so what?)

Charles J. Glover Artie McFerrin Department of Chemical Engineering, Texas A&M University/ Texas Transportation Institute

International Workshop on Binders and Mastics Madison, Wisconsin September 16, 2010

Presentation Overview

- Oxidation *kinetics* fast-rate and constant-rate
- Oxygen *diffusivity* in binders and mastics
- Binder *rheology*: hardening due to oxidation
- *Mixture* hardening and changes to fatigue resistance due to oxidation
- Modeling oxidation and hardening in pavements
- References

Oxidation Kinetics

Asphalt Oxidation Kinetics - Our Laboratory -

Previous work: Constant-rate oxidation kinetics

- Lau, C. K., K. M. Lunsford, C. J. Glover, R. R. Davison, and J. A. Bullin, "Reaction Rates and Hardening Susceptibilities as Determined from POV Aging of Asphalts," Transp. Res. Rec., <u>1342</u>, 50-57 (1992).
- Liu, M., K.M. Lunsford, R.R. Davison, C.J. Glover and J.A. Bullin, "The Kinetics of Carbonyl Formation in Asphalt," AIChE J., <u>42(4)</u>, 1069-1076 (1996). *(Includes pressure effects)*
- Domke, C.H., Davison, R.R. and Glover, C.J., "Effect of Oxygen Pressure on Asphalt Oxidation Kinetics," Ind. Eng. Chem. Res., <u>39</u>(3), 592-598 (2000).
- Recent work: Fast-rate; constant-rate oxidation kinetics Xin Jin, et al., Petersen Asphalt Research Conference

Alon PG64-22 Aged in Air Pressure

Fast-rate – Constant-rate Kinetics Model

Hypothetical parallel-reaction model in terms of CA:

$$CA = M \bullet [1 - exp(-k_f \bullet t)] + CA_{tank} + k_c \bullet t$$

Constant-rate Reaction Kinetics

Fast-rate Reaction Kinetics

Fast-rate Reaction Kinetics

How well does the model work?

CJG, IWABM 9-16-10

Table of Kinetics Parameters

	Constant Rate Kinetics		Fast Rate Kinetics	
Binders	A' _c (CA/day)	E _{ac} (KJ/ mol)	A' _f (1/day)	E _{af} (KJ/mol)
SEM PG64-22	2.15E+08	68.4	7.97E+05	43.5
SEM PG70-22	9.51E+09	79.4	3.61E+06	48.1
MARTIN PG64-22	9.30E+08	72.2	2.07E+07	52.7
MARTIN PG70-22	2.05E+11	87.7	1.21E+07	58.7
ALON PG64-22	3.68E+10	83.2	8.37E+07	58.9
ALON PG76-22	4.02E+09	77.0	3.07E+05	41.4
Valero-H PG64-22	7.91E+07	65.5		
Valero-H PG70-22	3.38E+07	62.7		
Lion PG70-22	4.77E+08	70.1		

What's The Point?

• With oxidation kinetics parameters known, together with *T(t)* and *P(t)*, one can calculate binder oxidation as a function of time.

$$CA = M \bullet [1 - exp(-k_f \bullet t)] + CA_{tank} + k_c \bullet t$$

$$k_f = A'_f \exp(-E_{af}/RT)$$

$$k_c = A'_c \exp(-E_{ac}/RT)$$

Oxygen Diffusivity in Asphalt

Thin Film Model

Model Concept and Mathematical Expression

Schematic of asphalt thin film model

Governing Equation

 $h = h_0(1 + 0.00215(T - T_r))$

BCs & IC

 $\left(\frac{\partial P}{\partial x}\right) = 0$ at x=0 Substrate Interface $P = P_{gas}$ at x=L Exposed Surface P = 0 at t=0 Initial Condition

Thin Film Model

Calculation of a Value and Time for P_{SI}

P_{SI} Value

$$r_{CA} = AP^{\alpha}e^{-E/RT}$$

$\mathbf{P}_{\rm SI}$ Time

Close to medium point of testing time

 D_{O2}/T and (η_o^*) : Empirical Correlation

CJG, IWABM 9-16-10

D₀₂ in Mastics

Effect of ϕ of Aggregate Fines on D_{O2}

Diffusivity Conclusions

 ⊕ Oxygen diffusivity in asphalt materials is highly dependent on temperature and viscosity of asphalt; A correlation was established between log D_{o2}/T and log ($η_0^*$).

Oxygen diffusivity in mastics decreases with an increase of volume fraction of aggregate fines; this effect of fines on oxygen diffusivity can be estimated using conventional prediction models

Effects of Oxidation on Asphalt Rheology

Asphalt Master Curves

Hardening Susceptibility

Field Binder Aging

So what? Pavement Performance Depends upon:

- Pavement Structure
- Mixture Parameters:
 - -Aggregate type/gradation
 - -Binder Content
 - -Compaction
- Traffic Loading
- Thermal Loading

Pavement Performance Depends upon:

- Binder Properties
 - -Rheology
 - Temperature TTS shift factor
 - Oxidation
 - -Hardening Susceptibility
 - -Temperature
 - -Diffusivity
 - -Water Susceptibility

Pavement Performance Depends upon:

Mixture BB Fatigue Cycles-to-Failure vs Strain

Microstrain

Walubita et al., FHWA/TX-05/0-4468-2, 169 (2005)

Mixture Fatigue

Mixture Fatigue

Aging Time (months at 60 °C, 1 atm)

Fatigue Life Decline With Aging

 $N_f(t) = N_{f0}e^{-K_1K_2t}$

FATIGUE LIFE

DEFINITIONS

 N_f = Field Fatigue Life - Cycles, ESALs

 R_L = Pavement Loading Rate, ESALs/yr

FOR CONSTANT N_f

 $N_f / R_L =$ Field Fatigue Life - Time, years

Fatigue Life

FOR $N_f(t)$ A FUNCTION OF TIME:

Fraction of Life Expended During Time $dt = \frac{dt}{N_f(t) / R_L}$

CUMMULATIVE DAMAGE:

At life's end, fractions sum to 1: \int_0^t

$$\frac{t_{\rm end}}{N_f(t) \, / \, R_L} = 1$$

$$N_f(t) = N_{fo} e^{-K_1 K_2 t}$$

Pavement Fatigue: Remaining Service Life

Pavement Performance Depends upon:

CJG, IWABM 9-16-10

TRANSPORT MODEL CALCULATIONS **OF BINDER HARDENING IN PAVEMENTS**

- Calculation of hardening is based on fundamentals: oxidation kinetics, diffusivity, HS, DSRFn, master curves
- Oxygen in pavements appears to be ubiquitous – little evidence that oxygen supply to pavements is very restricted (tentative hypothesis); pores allow air permeation
- Includes effect of binder oxidative hardening on mixture properties, fatigue resistance decline, e.g.

Thermal Transport Texas Transportation

Temperature Modeling concept and mathematical expression

Mathematical Modeling

Bottom Boundary Condition: Depth Independent heat flux based on field measurement Ð

Comparison of sample calculations with field measurements, pavement 48-1068, Mar-1994.

Han, Rongbin, Xin Jin, Charles J. Glover, Modeling Pavement Temperature for Use in Binder Oxidation Models and Pavement Performance Prediction, JMCE, in press. CJG, IWABM 9-16-10

Transport Model Calculations of Binder Oxidation in Pavements (Texas)

Model from: Prapaitrakul et al., Rd MtIs and Pvmt Des, 10, 95-113 (2009) CJG, IWABM 9-16-10

Transport Model Calculations of Binder Hardening in Pavements (Minnesota)

Model from: Prapaitrakul et al., Rd Mtls and Pvmt Des, 10, 95-113 (2009) CJG, IWABM 9-16-10

Pavement Performance Depends upon:

- Binder oxidation occurs in pavements
- Oxidation kinetics can be described by parallel fast-rate and constant-rate reactions
- The fast-rate reaction is product limited; the constant-rate reaction proceeds indefinitely
- Oxygen diffusivity correlates well to *T* and binder viscosity (base binder for PMA). Fines affect diffusivity in accordance with common models
- Oxidative hardening adversely affects mixture fatigue life and thus pavement durability
- A transport model serves as a foundation for pavement performance predictions

Acknowledgments

- Texas Department of Transportation
- Federal Highway Administration, ARC
- Texas Transportation Institute
- Artie McFerrin Department of Chemical Engineering

References

- Martin, K. L., R. R. Davison, C. J. Glover, and J. A. Bullin, "Asphalt Aging in Texas Roads and Test Sections," Transp. Res. Rec., <u>1269</u>, 9-19 (1990).
- Burr, B. L., R. R. Davison, C. J. Glover, and J. A. Bullin, "Solvent Removal from Asphalt," Transp. Res. Rec., <u>1269</u>, 1-8 (1990).
- Burr, B. L., R. R. Davison, H. B. Jemison, C. J. Glover, and J. A. Bullin, "Asphalt Hardening in Extraction Solvents," Transp. Res. Rec., <u>1323</u>, 70-76 (1991).
- Cipione, C. A., R. R. Davison, B. L. Burr, C. J. Glover, and J. A. Bullin, "Evaluation of Solvents for the Extraction of Residual Asphalt from Aggregates," Transp. Res. Rec., <u>1323</u>, 47-52 (1991).
- Lau, C. K., K. M. Lunsford, C. J. Glover, R. R. Davison, and J. A. Bullin, "Reaction Rates and Hardening Susceptibilities as Determined from POV Aging of Asphalts," Transp. Res. Rec., <u>1342</u>, 50-57 (1992).
- Burr, B. L., Davison, R. R., Glover, C. J., and J. A. Bullin, "Softening of Asphalts in Dilute Solutions at Primary Distillation Conditions", Transp. Res. Rec., <u>1436</u>, 47-53 (1994).
- Liu, M., K.M. Lunsford, R.R. Davison, C.J. Glover and J.A. Bullin, "The Kinetics of Carbonyl Formation in Asphalt," AIChE J., <u>42</u>(4), 1069-1076 (1996). *(Includes pressure effects).*
- Liu, M., Lin, M.S., Chaffin, J.M., Davison, R.R., Glover, C.J. and Bullin, J.A., "Oxidation Kinetics of Asphalt Corbett Fractions and Compositional Dependence of Asphalt Oxidation," Petroleum Sci. and Technol., <u>16(7&8)</u>, 827-850 (1998).
- Liu, M., Ferry, M.A., Davison, R.R., Glover, C.J. and Bullin, J.A., "Oxygen Uptake as Correlated to Carbonyl Growth in Aged Asphalts and Asphalt Corbett Fractions," Ind. Eng. Chem. Res., <u>37</u>, 4669-4674 (1998).

References (Cont'd)

- Liu, M., Chaffin, J.M., Davison, R.R., Glover, C.J. and Bullin, J.A., "Changes in Corbett Fraction Composition during Oxidation of Asphalt Fractions," Transp. Res. Rec., <u>1638</u>, 40-46 (1998).
- Domke, C.H., Davison, R.R., and Glover, C.J., "Effect of Oxidation Pressure on Asphalt Hardening Susceptibility," Transp. Res. Rec., <u>1661</u>, 114-121 (1999).
- Domke, C.H., Davison, R.R. and Glover, C.J., "Effect of Oxygen Pressure on Asphalt Oxidation Kinetics," Ind. Eng. Chem. Res., <u>39</u>(3), 592-598 (2000).
- Chipps, J.F., Davison, R.R. and Glover, C.J., "A Model for Oxidative Aging of Rubber- Modified Asphalts and Implications to Performance Analysis," Energy and Fuels, 15, 637-647 (2001).
- Ruan, Y., Davison, R.R., and Glover, C.J., "An Investigation of Asphalt Durability: Relationships between Ductility and Rheological Properties for Unmodified Asphalts," Petroleum Science and Technology, <u>21(1&2)</u>, 231-254 (2003).
- Ruan, Y., Davison, R.R. and Glover, C.J., "The Effect of Long-Term Oxidation on the Rheological Properties of Polymer Modified Asphalts," Fuel, <u>82(14)</u>, 1763-1773 (2003).
- Ruan, Y., Davison, R.R. and Glover, C.J., "Oxidation and Viscosity Hardening of Polymer Modified Asphalts," Energy and Fuels, <u>17</u>(4), 991-998 (2003).
- Al-Azri, N.A., Jung, S.H., Lunsford, K.M., Ferry, A., Bullin, J.A., Davison, R.R., and Glover, C.J., "Binder Oxidative Aging in Texas Pavements: Hardening Rates, Hardening Susceptibilities, and the Impact of Pavement Depth," Transp. Res. Rec., <u>1962</u>, 12-20 (2006).

References (Cont'd)

- Walubita, L.F., Epps Martin, A., Glover, C.J., Jung, S.H., Cleveland, G.C., Lytton, R.L, and Park, E.S.,
 "Application of the Calibrated Mechanistic Approach with Surface Energy (CMSE) Measurements for
 Fatigue Characterization of Asphalt Mixtures," *J. Assoc. of Asphalt Paving Technol.*, 75, 457-490 (2006).
- Woo, W. J., Hilbrich, J. H., and Glover, C. J. "Loss of Polymer Modified Binder Durability with Oxidative Aging: Base Binder Stiffening vs. Polymer Degradation," Transp. Res. Rec., <u>1998</u>, 38-46 (2007).
- Woo, W. J., Chowdhury, A., and Glover, C. J. "Field Aging of Unmodified Asphalt Binder in Three Texas Long-Term Performance Pavements," Transp. Res. Rec., <u>2051</u>, 15-22 (2008).
- Prapaitrakul N., Jin X., Han R., and Glover, C. J. "A Transport Model of Asphalt Binder Oxidation in Pavements," Road Materials and Pavement Design, <u>10</u> (Special Issue), 95-113 (2009).
- Juristyarini, P., Davison, R.R. and Glover, C.J., "Development of an Asphalt Aging Procedure to Assess Long-Term Binder Performance," Petroleum Science and Technology, in press.
- Juristyarini, P., Davison, R.R. and Glover, C.J., "Oxidation and Hardening Kinetics of rheological Function G'/ (h'/G')," Petroleum Science and Technology, in press.
- Han, Rongbin, Jin, Xin., and Glover, C. J., "Modeling Pavement Temperature for Use in Binder Oxidation Models and Pavement Performance Prediction," Journal of Materials in Civil Engineering, in press.
- *Jin, Xin and Glover, C.J., Fast-rate; constant-rate oxidation kinetics,* presented at the 47th Petersen Asphalt Research Conference, July 2010, and paper in preparation.
- Han, Rongbin and Glover, C.J., Oxygen Diffusivity in Asphalt, presented at the 47th Petersen Asphalt Research Conference, July 2010, and paper in preparation.

