VECD (Visco-Elastic Continuum Damage):

State-of-the-art technique to evaluate fatigue damage in asphalt pavements

M. Emin Kutay, Ph.D., P.E.

Assistant Professor Michigan State University

 $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

Advancing Knowledge. Transforming Lives.

History of the Viscoelastic Continuum Damage (VECD) theory

Advancing Knowledge. Transforming Lives.

MICHIGAN STATE

- ..CD Continuum Damage
- A continuum is a body that can be continually sub-divided into infinitesimal small elements with properties being those of the bulk material.

Advancing Knowledge. Transforming Lives.

Damage characteristic curve (C vs S)

rst input → LVE characteristics

(b)

 10^{8}

7

1000

How to get C & S

VECD equations

Pseudo-strain	$\varepsilon^{R} = \frac{1}{E^{R}} \int E(t-\tau) \frac{\partial \varepsilon}{\partial \tau} d\tau {}^{0.2} \Box$
Stress-strain relation (E-VE correspondence principle)	$\sigma = C \epsilon^{R}$
Energy equation	$\sigma = \frac{\partial W_{\varepsilon}}{\partial \sigma^{R}} \qquad W_{\varepsilon} = \frac{1}{2} C \varepsilon^{R^{2}}$

Energy equation
$$\sigma = \frac{\partial W_{\varepsilon}}{\partial \varepsilon^{R}} \qquad W_{\varepsilon} = \frac{1}{2} C \varepsilon$$
Damage evolution
$$\frac{dS}{dt} = \left[-\frac{\partial W}{\partial S}\right]^{\alpha}$$

C vs S

2

S

3

5

x 10⁵

0.8

O 0.6

Advancing Knowledge. Transforming Lives.

Drawbacks of past VECD

approaches

- Monotonic tension likely requires force greater than capacity of the AMPT (a.k.a., SPT)
- Convolution integral can be very time consuming $e^{R}(t) = \int_{0}^{t} E(t-t) e^{\partial t} dt$

$$\varepsilon^{\mathrm{R}}(t) = \int_{0}^{\infty} \mathrm{E}(t-\tau) \frac{\partial \varepsilon}{\partial \tau} \mathrm{d}\tau$$

 Routine FE analysis for pavement design may not be practical (but strong basis for Performance <u>Related Specifications (PRS)</u>)

MICHIGAN STATE

Practical use of VECD : Cyclic 'Push-Pull' Faligue Approach

See Also: Kutay, Gibson & Youtcheff – AAPT – 2008

Uniaxial 'push-pull = compression-

tension' fatigue tests

Advantages:

- Sample can be made in Superpave gyratory compactor
- Simple uniaxial stress state
- Tests can be conducted using the Asphalt Mixture Performance Tester (AMPT, a.k.a. Simple Performance Tester-SPT

Cyclic 'Push-Pull' Fatigue

Approach

 Well Poised For Implementation through AMPT (SPT)

 This type of routine testing is now within the reach of State DOTs and Contractors

C&S from peak-to-peak

stresses and strains

Derivations are at Kutay, Gibson & Youtcheff @ AAPT 2008

UNIVERSITY Advancing Knowledge. Transforming Lives.

MICHIGAN STATE UNIVERSITY

C vs S curve of the Control PG70-22 mixture at

different temp., freq. and loading modes

Is peak to peak C vs S same as the C vs S computed using the hereditary integral ?

Advancing Knowledge. Transforming Lives.

STEP (1) Calibrate model using peak-to-peak formulation :

C vs S was calculated using peak to peak stresses and strains.

STEP (2) Simulate using the state-variable implementation of the hereditary integral: Rigorous simulation (input: time v.s. strain, output: stress) was performed using VECD state variable implementation.

$$\sigma_{i}^{el}(t) = e^{-\Delta t/\rho_{i}} \sigma_{i}^{el}(t - \Delta t) + \frac{\Delta \varepsilon}{\Delta t} \eta_{i} \left[1 - e^{-\Delta t/\rho_{i}} \right] \quad \text{(stress in ease at time } t)$$

$$\varepsilon^{R}(t) = E_{\infty}\varepsilon(t) + \sum_{i=1}^{n} \sigma_{i}^{el}(t) \quad \text{(pseudostrain)}$$

$$\frac{dC}{dS}\Big|_{@t} = \exp(aS(t)^{b})abS(t)^{b-1}$$

$$S(t + \Delta t) = S(t) + \Delta t \left[-0.5I\varepsilon^{R}(t)^{2}\frac{dC}{dS}\Big|_{@t} \right]^{\alpha}$$

$$C(t + \Delta t) = \exp(aS(t + \Delta t)^{b})$$

$$\sigma(t + \Delta t) = IC(t + \Delta t)\varepsilon^{R}(t + \Delta t)$$

(stress in each Maxwell element at time t)

STEP (3) Validation (A) Stress sweep testing at 10Hz, 19C

20

STEP (3) Validation (B) crosshead strain controlled fatigue testing at 10Hz, 19C

Advancing Knowledge. Transforming Lives.

MICHIGAN STATE

UNIVERSITY

Is peak to peak C vs S same as the C vs S computed using the hereditary integral ?

Answer: YES!

MICHIGAN STATE

Advancing Knowledge. Transforming Lives.

USE #1: Finite Element Implementation

Research led by R. Kim at NCSU with ALF materials

U.S. Department of Transportation Federal Highway Administration

MICHIGAN STATE UNIVERSITY Advancing Knowledge. Transforming Lives.

USE #2 -> Simulation of uniaxial cyclic strain controlled tests (Simplified & More Practical)

Validation of the applicability of VECD to push-pull fatigue tests

Push-pull fatigue simulation results (ALF Mixtures)

d accelerated **Comparison with tie**

pavement testing data

UNIVERSITY

Use #3: Fatigue life from the VECD and proposed MEPDG implementation

Number of cycles to failure (N_f): General form of the equation

Closed-form solutions of the N_f equation for special cases

- * Christensen, D. W. and Bonaquist, R. F. (2005). "Practical application of continuum damage theory to fatigue phenomena in asphalt concrete mixtures." *J. Assn. of Asphalt Paving Technologists*, Vol.74, pp. 963-1002.
- ** Lee, H. J., Daniel J. S., and Kim, Y. R. (2000) "Continuum damage mechanics-based fatigue model of asphalt concrete." J. Mater. Civ. Eng., 12(2), 105–112.

UNIVERSITY Advancing Knowledge. Transforming Lives.

General form of the VECD-N_f equation

$$N_{f} = \sum_{S=1}^{S_{f}} \left[-\frac{\varepsilon_{0}^{2} \left| E^{*} \right|_{LVE}^{2}}{2} \frac{dC}{dS} \Big|_{atS} \right]^{-\alpha} f \Delta S_{S}$$

• Procedure:

MICHIGAN STATE

IVERSITY

- Select the C(S) function that best fits to given data
- Select failure criterion, e.g., C=0.5, strain level (\mathcal{E}_0) and $|E^*|_{LVE}$
- Calculate S_f corresponding to C=0.5
- Calculate N_f using equation above.

Proposed MEPDG

implementation

- Level 1 input (using AMPT)
 - |E*| master curve
 - Push-pull test at a specified temperature and frequency (e.g., 15°C, 10Hz)

Possible use of VECD in MEPDG for remaining service life

Comparison with field accelerated

pavement testing data

The End

M. Emin Kutay, Ph.D., P.E.

Assistant Professor Michigan State University Department of Civil & Environmental Engineering

kutay@msu.edu

elation o

field- different load levels:

Prediction of fatigue life

$$N_{f} = \sum_{S=1}^{S_{f}} \left[-\frac{\varepsilon_{0}^{2} \left| E^{*} \right|_{LVE}^{2}}{2} \frac{dC}{dS} \right|_{atS} \right]^{-\alpha} f \Delta S_{S}$$

Specimen size limitation

- Traditional specimen sizes:
 - 100 or 75 mm diameter, 150 mm tall
- Thin pavements (thickness< 150mm) are not suitable for field core testing
- Solution (?)
 - Small diameter & small height samples
 - Horizontal coring from the field slabs

Can small size samples work?

□ Regular Size (RS) \rightarrow D = 71.4 mm, H = 150 mi

□ Small Size (SS) \rightarrow D = 38.1 mm , H= 100 mm

Reference: Kutay, Gibson & Youtcheff @ TRB 2009

Next step after obtaining C & S

 Develop the relationship by fitting a simple equation

