Image Analysis of HMA to Characterize the Aggregate Orientation

Kyoungchul Kim and Carl Johnson Dept. of Civil & Environmental Engineering

MADISON

Program Comparisons

Target Area Detection Assumption: G_{agg}=2.5-2.7 G_{ab}=1.05-1.08 Air Voids=8% Height=108 mm

Target Area Maximum:67.4% Minimum:64.2%

Aggregates are uniformly distributed Smaller than 1mm size aggregate can not be detected

Procedures of KCKIM

(1) Image Loading From Data Folder

n3Dtreat jpg nopen Image Information Cone Diameter: 150 mm Top Left X: 1 Width 2610 Y: 1 Height 2180 Preview Zoom In >= 4.75 mm Result Delta	🛃 kckim	
Cropped Image	<image/> <image/>	n30treat.jpg Open Image

Input Image File Name and Click Open Image An mage for processing must be in data folder

Procedure of KCKIM

(2) Selection of Region of Image for the Processing

kckim	
	n30treat.jpg Open Image Information Cone Diameter : 150 mm Top Left
	X: 1 Width 2610 Y: 1 Height 2180 Preview Zoom In
	>= 4.75 mm Result
	Delta L O
Cropped Image	Delta A 0

Input X and Y, Width and Height for the Interest Region of Image Click Preview

Procedure of KCKIM

(3)Zoom In Selection Region

Click Zoom In Image applied with Equalization, Stretching, Smoothing, and Filtering

Procedure of KCKIM

(4) Analysis and Labeling

Processing Techniques

ARC

6

Edge Detection,
 Thresholding
 Region Growing
 Erosion and Dilation
 Opening and Closing
 Spliting
 Labeling
 Data Stored

Input Size of aggregate and Click Result In the Results Folder, Analysis Data (Text File) and Processing Images of Each Step (JPEG File) are Stored

Image Processing from Image Pro

Raw Image

Processed with density index Mastic: ≤164 Aggregate: >164

Using Image-Pro software

Fine Image Processing

(1)Thresholded Image

1st Threshold=0.65 and Region Growing

Using Image-Pro software

(2) Final Segmented Image

1st Threshold=0.65 and Region Growing

Aggregate Area Detection=50.38%

Using Image-Pro software

Aggregate Area Detection=55.28%

(2) Final Segmented Image

1st Threshold=0.70 and Region Growing

1st Threshold=0.75 and Region Growing

Aggregate Area Detection=56.01%

From KCKIM

Aggregate Area Detection=57.14%

From KCKIM

10

N=200 Mixture

From KCKIM

Original Image after Equalization

Threshold Image

N=200 Mixture

From KCKIM

Final Image

Labeling and Analysis

Area Detection=58.26%

ARC

N=200 Mixture

Internal Structure Analysis Using Image Analysis Technique

- > The direction distribution of aggregate orientation approximated by harmonic series expansion (Masad 1998) $n(\theta_i) = n_a(1+A_2\cos^2\theta_i + 2B_2\sin\theta_i\cos\theta_i - A_2\sin^2\theta_i)$
- > Absolute average angle of orientation θ, orientations of aggregates
- Vector magnitude Δ, Complete random distribution of the orientation=0%, Exactly the same direction=100%

$$\theta = \frac{\sum |\theta_k|}{N} \qquad \Delta = \frac{100}{N} \sqrt{(\sum \sin 2\theta_k)^2 + (\sum \cos 2\theta_k)^2}$$

Proposed Internal Structure Interpretation In the Image Processing

- N is the number of aggregates with a diameter larger than 1.18mm in the image. X_K is either the largest length (L_K) or the area (A_K) of each aggregate object in the image.
- Vector magnitudes, the value of ΔN, ΔL, and ΔA, varies from zero to one. Complete random distribution of the orientation will give a vector magnitude of zero

Comparison of N=30 and N=200

Aggregate Orientation

Comparison of N=30 and N=200

Aggregate Orientation

