# Development of a "standard" image analysis software for determination of aggregate characteristics in HMA

#### M. Emin Kutay, Ph.D., P.E.

Assistant Professor Michigan State University

Hussain Bahia, Ph.D.

Professor University of Wisconsin, Madison

MICHIGAN STATE

ERSITY

#### **Carl Johnson**

Highway Research Engineer University of Wisconsin, Madison

Presented at "RILEM Task Group 2 - Mixture Design and Compaction" Meeting January 14, 2009 - Washington, DC



Advancing Knowledge. Transforming Lives.

### Internal structure of HMA pavements

- Significantly affect the long-term performance
- Includes many volumetric properties other than Air Voids, VMA and VFA
  - Individual aggregate characteristics & packing
  - Air void size distribution and connectivity



Fine graded HMA mix



Coarse graded HMA mix



SMA graded HMA mix

# Characteristics of aggregates packed in an asphalt mixture

- Contact points (or influence zone)
- Orientation
- Segregation

ERSITY

- Spatial distribution of different sizes
- Angularity, sphericity, specific surface area and texture MICHIGAN STATE Advancing Knowledge. Transforming Lives.



### Imaging methods

### X-ray Computed Tomography

- Advantages:
  - Fully three-dimensional (3D)
  - Non-destructive
- Disadvantages

MICHIGAN STATE

- Cost of the equipment (~\$750K)
- Slow image capturing (~3 hrs per sample)
- Resolution (0.3 mm/ voxel)



Imaging methods

- Digital Imaging
  - Advantages:
    - Inexpensive equipment
      - Digital camera or a scanner
    - Very high resolution (up to 10 Megapixel)
    - Fast

MICHIGAN STATE

- Disadvantages
  - Destructive
  - Two dimensional (2D)





Advancing Knowledge. Transforming Lives.

### Need for a Customized Image

## **Analysis Procedure**

- Numerous generic image analysis softwares available
  - ImagePro, Amira, ImageJ, Blob3D...etc.
  - For accurate extraction of quantitative information
    - Strong knowledge in computer vision techniques may be needed
  - It is important not to over-process the images and loose many of the detail, while trying to eliminate noise from the image.

In order to promote the use of valuable image analysis methods:



IVERSITY



Straightforward



• A standard methodology







#### KCKim software – UW-Madison 🚺 kckim



| Cono Diom                                    | otor :      | 1.50 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cone Diam                                    |             | 150 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Top Left                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 600                                          | _ Width     | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1: 400                                       | Height      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Preview                                      |             | nom in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              |             | Charles and the second s |
|                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| = 4                                          | .75 mm      | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ≥= 4                                         | .75 mm      | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| >= 4<br>Delta                                | .75 mm      | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| >= 4<br>Delta                                | .75 mm<br>0 | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| >= 4<br>Delta<br>Delta L                     | .75 mm<br>0 | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| >= <b>−</b> 4<br>Delta<br>Delta L<br>Delta A | .75 mm<br>0 | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Advancing Knowledge. Transforming Lives.

Three main components of the software

- 1. Image processing
- 2. Image analysis, and
- Automated analysis using artificial neural networks (ANNs)





### Updated KCKim software

| test.jpg Open Image                                 |
|-----------------------------------------------------|
| Cone Diameter : 150 mm                              |
| Top Left<br>X : 600 Width 500<br>Y : 400 Height 300 |
| Preview Zoom In                                     |
| >= 4.75 mm Result                                   |
| Delta O                                             |
|                                                     |
|                                                     |



Cropped Image

## Menu item: 'Image Processing

#### K\_kckim File Image Processing Image Analysis A.N.N.

- Gaussian smoothing
- Median filtering

ERSITY

- Regional maxima (hmax) and minima (hmin) filters
- Watershed transformation
- Basic image operations including thresholding, adding, and inverting images
- Advanced "variable thresholding" algorithm
- Image gradient computation
- Others, e.g., applying zeros of one image to another

### Menu item: 'Image Analysis'

- K\_kckim
  File Image Processing Image Analysis A.N.N.
- Basic region properties: Labeling separate regions (i.e., aggregates) and calculation of bounding box, area, perimeter and centroid of each aggregate.
- Advanced region properties: Specific surface area, equivalent diameter, min and max axes, orientation, passing sieve size and percent aggregate area within each watershed.
- Contact points: Aggregate-to-aggregate contact points based on a proximity criterion.
- Aggregate properties: Angularity, sphericity, flat/elongation ratio...etc.

# Menu item: 'A. N. N.'

File Image Processing Image Analysis A.N.N.

- First goal → to speed up (or totally skip) the image processing step by training an ANN to detect locations of aggregate pixels and to convert the image into a binary image.
- Second goal → to process challenging images which include asphalt specimens with aggregates that has specific reflectance characteristics (e.g., multi-colored or shiny aggregates).



# The End

#### M. Emin Kutay, PhD, PE

Assistant Professor Michigan State University Department of Civil & Environmental Engineering

kutay@msu.edu