ARC Update on Warm Mix Research
By Hussain Bahia

Presented to
Manitoba, Infrastructure and Transportation
Materials Engineering Branch
Central Lab, 1181 Portage Avenue Annex
Winnipeg, Manitoba
March 17, 2009
ARC Subtask E1c-1: Effect of WMA Additives

• Progress Update
 – Binder Properties
 ▪ Viscosity
 ▪ Performance Grade
 – Mixture Workability
 ▪ Compaction Curves
 ▪ Workability Indices
Effect on Viscosity: PG64-22

PG64-22 Viscosity vs. Shear Rate

Change in η due to additive, relatively small.

Change in η due to temperature

PG64 Control
Sasobit - 2%
Surfactant - 0.5%
Effect on Viscosity: PG76-22

PG76-22 Viscosity vs. Shear Rate

- Change in η due to temperature.
- Change in η due to additive relatively small.

PG76 Control
- Sasobit - 2%
- Surfactant - 0.5%
Effects of WMA Additives:
HT PG Grade ($G^*/\sin\delta$)

2% Sasobit - One Grade Bump

0.5% Surfactant - One Grade Lower
Effects of WMA Additives: HT PG Grade (MSCR)

MSCR J_{nr} Results - RTFO Binder

- Sasobit shows much higher stress sensitivity
Effects of WMA Additives: LT PG Grade

Temperature -12°C

- **Stiffness at 60 sec, MPa**
 - Control: PG64-22, PG76-22
 - Sasobit 2%: PG64-22, PG76-22
 - Surfactant 0.5%: PG64-22, PG76-22

- **m-value**
 - Control: PG64-22, PG76-22
 - Sasobit 2%: PG64-22, PG76-22
 - Surfactant 0.5%: PG64-22, PG76-22
Mixture Workability

- **Mix Design**
 - NMAS: 19.0 mm/Gradation: Fine /AC: 5.4%

- **Binder Grades**
 - PG64-22-and polymer-modified PG76-22

- **Evaluation Criteria**
 - Compaction Curves and Air Voids
 - Workability indices
 - Construction Densification Index (CDI)
 - Construction Force Index (CFI)
Mixture Workability - CDI

- **CDI Based on Compaction Curves:**
 - Area under the %Gmm vs. Gyration Curve from Nini – 92% Gmm. Densification after paver to field compaction.
 - Lower CDI relates to better workability.
Mixture Workability - CFI

- CFI Based on Force Measured by PDA Plate:
 - Pressure Distribution Analyzer (PDA) allow for calculation of resistive forces in the mix during compaction (w)
 - CFI calculated as the area under the Resistive Force (w) vs. Gyration curve
Mixture Workability – 600KPa

- No noticeable effects of WMA Additives.
- Additives allow mixes at 90°C to attain density of control mix at 135°C.
Mixture Workability – 300KPa

Densification Curves for PG64: 300 kPa, 90°C

% Gmm

Gyrations

HMA
Mineral-Based
Surfactant
135 HMA Control
Mixture Workability – CDI- 600KPa

- Little difference between mixes until 90°C compaction temperatures.
- WMA has significantly lower % Air Voids.
- CDI shows similar trends. WMA much more workable at 90°C than HMA.
- CDI of WMA 66% lower.

PG 76-22 Voids Analysis - 600 kPa, N=21 Gyraisons

% Air Voids for HMA ~ 1% Higher

PG76: CDI vs. Temperature - 600 kPa

66% Reduction for WMA
Mixture Workability – CDI- 300KPa

PG 64: CDI vs. Temperature - 300 kPa

- HMA
- Mineral-Based
- Surfactant

Temperature vs. CDI for different materials at 300 kPa.
Mixture Workability - CFI

- Construction Force Index
 - Force measurements are consistent – WMA additive requires less force to reach the same level of compaction.
Moving Forward – Binder

<table>
<thead>
<tr>
<th>Binder</th>
<th>PG Grade</th>
<th>ZSV</th>
<th>UW-Madison Tack Test</th>
<th>G*/sinδ (HT °C)</th>
<th>MSCR (HT°C)</th>
<th>G*sinδ (IT °C)</th>
<th>BYET (IT °C)</th>
<th>BBR (LT+10°C)</th>
<th>SENB (LT+10°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neat L</td>
<td>64-22</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Neat H</td>
<td>76-22</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Neat L+ 2% Sasobit</td>
<td>70-22</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Neat H+ 2% Sasobit</td>
<td>76-22</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Neat L + Surfactant</td>
<td>X</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Neat H + Surfactant</td>
<td>X</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Neat L Foamed</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Neat H Foamed</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

✓ = Test completed
X = Test is planned
Moving Forward – Workability

<table>
<thead>
<tr>
<th>Gradation</th>
<th>Pressure [kPa]</th>
<th>Comp. Temp. [°C]</th>
<th>Control</th>
<th>Mineral Based Additive</th>
<th>Surfactant</th>
<th>Foaming</th>
<th>Sasobit</th>
<th>Control</th>
<th>Mineral-Based Additive</th>
<th>Surfactant</th>
<th>Foaming</th>
<th>Sasobit</th>
</tr>
</thead>
<tbody>
<tr>
<td>19mm Fine</td>
<td>600</td>
<td>135</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>135</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>19mm Coarse</td>
<td>600</td>
<td>135</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>135</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>X</td>
</tr>
</tbody>
</table>

✓ = Test completed
X = Test is planned
Testing of Field Mixtures
Field Projects in WI – 2008

![Graph showing final density percentage versus total roller passes for WMA and HMA materials.]

- **Final Density, %**
- **Total Roller Passes, n**

Legend:
- WMA
- HMA
Field Mixes – with RAP

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>HMA - Design</th>
<th>HMA - UW</th>
<th>WMA - 30% QC</th>
<th>WMA-40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compaction Temp (F)</td>
<td>275</td>
<td>275</td>
<td>215</td>
<td>221</td>
</tr>
<tr>
<td>Nini - 7</td>
<td>91.2%</td>
<td>90.4%</td>
<td>92.0%</td>
<td>93.8%</td>
</tr>
<tr>
<td>Ndes - 60</td>
<td>96.1%</td>
<td>95.4%</td>
<td>97.0%</td>
<td>98.3%</td>
</tr>
<tr>
<td>Nmax- 75</td>
<td>96.6%</td>
<td>95.8%</td>
<td>N/A*</td>
<td>N/A*</td>
</tr>
<tr>
<td>VMA</td>
<td>14.10</td>
<td>12.86</td>
<td>12.30</td>
<td>11.00</td>
</tr>
</tbody>
</table>

*WMA QC samples were compacted to Ndes.
Summary / Wish List

• WMA works at lower temps
 – Density is not a good measure
 – Better use densification indicators

• Project should include true control
 – HMA @ same temps as WMA
 – Enough materials
 – Good recording of temp, roller passes and sampling
Thank you!

• For giving us the opportunity
• For the warm reception to talk about warm asphalt
• Getting us to visit Winnipeg during our spring break!