#### ARC Asphalt Research Consortium

#### **Evaluation of PG Plus Testing Methods by the Asphalt Research Consortium**

Ahmed Faheem (Bloom Companies) Hussain U. Bahia (University of Wisconsin)

#### Rocky Mountain Asphalt User/Producer Group's 18<sup>th</sup> Annual Meeting October 20, 2009



### **Objective Statement in ARC Work Plan**

- ARC Task: Continual Assessment of Specifications
- The objectives of this task are
  - –To cooperate with state highway agencies to validate the findings of the research activities of the Consortium and,
  - -To evaluate the models used in the MEPDG for possible revisions.





## PG Plus Testing Methods Under Investigation

- High Temperature (Performance)
  - -Multiple Stress Creep and Recovery (MSCR)
- Intermediate Temperature
  - Elastic Recovery
- Low Temperature
  - -Single-Edge Notched Bending
  - -Asphalt Binder Cracking Device





## **Proliferation of PG+ Tests in WCTG**

- Elastic Recovery (AASHTO T301) MSCR (ASTM D7405)
- **Toughness and Tenacity (ASTM D 5801-95)**
- **Ductility (AASHTO T51)**



ARC



# **ARC Testing**

- MSCR Study
  - Multiple Stress Creep and Recovery Test (MSCR)
  - Asphalt Mixture Performance test (AMPT)
- Further Testing
  - Elastic Recovery (T301)
  - Elastic Recovery (DSR)- New test procedure
- Collaboration Agreement with WCTG to validate PG+ with field performance.





## **Research Methodology**

## Binder → Mastic → Mixture → Field Performance (with WCTG's help)

- Tests:
  - -MSCR: Binder, Mastic.
  - Elastic Recovery: Binder
  - **-AMPT: Mixture**





## **MSCR Test Evaluation**





### The Basis for the MSCR Test: Creep and Recovery – *NCHRP 9-10 (2000)*







# Is MSCR the Right Test ?

#### • Yes

- However, we need to answer these questions:
  - -What should be reported ?
    - Jnr, % Recovery
  - -What stress should be used ?
    - 0.1, 3.2 , 10 KP, ..... ?
  - -What is the relation to other PG+?





## MSCR Study: Effect of Elasticity and Fillers

- Binder:
  - Elastomeric Modified (SBS) = Binder A
  - Plastomeric Modified (CBE) = Binder B
- Fillers
  - Granite
  - Hydrated Lime
- Mixtures
  - Aggregate: Granite (Washed)
  - Gradation: Coarse
  - Mixtures generated with varying the filler and binder types





# **MSCR** Testing

- The MSCR testing was performed at
  - Two temperatures,
    - 64°C (high PG grade) and
    - 46°C (mixture testing temperature)
  - -Three Stresses: 0.1, 3.2, and 10kPa.
- 25mm parallel plate geometry.





# **Mixture Testing**

- Cylindrical specimens of 4" in diameter and 6" in height.
- Repeated Creep test with load period=1 sec and the rest period=9 seconds.
- Stress levels:
  - -50psi (0.435MPa), 100psi (0.689MPa), and 150psi (1.03MPa).
- All mixture testing was run at 46  $^\circ\text{C}$





## **Stress Sensitivity of Binders and Mastics**



# Binder → Mastic (Jnr At 64 C)

**Comparison of Binder and Mastic MSCR Testing at 64C** 0.30 **Jnr shows Linear Relation** 0.25 **As Expected** 0.20 **Mastic Jnr** 0.15 0.10 0.05 0.00 0.40 0.60 0.80 1.00 1.20 1.40 1.60 **Binder Jnr** ♦ 3.2kPa ■ 10kPa





# Binder → Mastic Cont'd (% Recovery @ 64C)

**Comparison of Binder and Mastic MSCR Recovery at 64C** 







# Binder → Mastic Cont'd (@46C)





# Binder → Mastic Cont'd (@ 46C)







# Binder → Mixture (@46C)







# Binder → Mixture (@46C)









- The results show no stress sensitivity for the Jnr and Recovery
- Correlation of MSCR results and Mixture performance is Undetermined at this stage of testing.
- Binder type and Mineral fillers clearly influence Mastic and Mixture performance
- More testing is underway to better establish correlation between binder, mastic, mixture and field Performance.





### **Collaboration with WCTG**





### **Database of Binder PG+ Performance**

- Binders: Provided by suppliers
  - Different Modifications, and Grades
- PG+ results and Field Projects: Provided by DOTs
  Identify paving project of future evaluation
- Goal: Provided by UW-Madison
  - Build database containing binder PG+ results and Field Performance indicators.
  - Evaluation of PG+ tests in light of Field Performance





## **Collaboration with WCTG (Binder Testing)**

- G\* and  $\delta$  (AASHTO M320)
- Toughness and Tenacity (ASTM D 5801-95)
- Elastic Recovery (AASHTO T301)
- MSCR (ASTM D7405)
  - Test at 2 temperatures
  - Test at 0.1, 3.2, and 10kPa
- Ductility (AASHTO T51)
- Direct Tension (AASHTO M320)





# Replacing T301 (ER) with the DSR

Daranga et al, "Replacing the Elastic Recovery Test of Asphalt Binders with a DSR Test: Development of Protocol and Relationship to Binder Fatigue" Submitted to TRB 2010





# Motivation

#### • **T301**:

- -Inconsistent sample geometry
- It is not clear what mixture property is targeted:
  - Fatigue? → Intermediate Temperature (25C)





### Is Elastic Recovery Important? Binder Fatigue

#### do not Correlate with Elastic Recovery

Asphalt Research Consortium

Better Fatigue 7.0E+05 Very poor ER! 6.0E+05 Poor Fatigue 5.0E+05 Why Use Very good ER! Np 20 at 22 C, aged Elastic 4.0E+05 **Recovery**? 3.0E+05 2.0E+05 y = 1196.5x + 298026 $R^2 = 0.0169$ 1.0E+05 0.0E+00 20 40 60 80 n Bastic Recovery @10 C, %

# Is Elastic Recovery Important? Binder Rutting

**Correlates with Elastic Recovery** 







# **DSR Testing**

- Measure elastic recovery using the DSR
- Strain Rate = 2.32%/Sec. Similar to AASHTO T301.
- Maximum strain = 278% based on 10cm elongation.
- All binders are PAV aged
- Tests at equal stiffness temperatures, G\* = 18MPa
- The main difference between the two tests
  - DSR-run elastic recovery is performed in SHEAR,
  - AASHTO T301 procedure is run in Uniaxial Tension





FH 4%LSBS XLK







# **Materials and Temperatures**

#### All binders are tested at equal stiffness temperatures, G\* = 18MPa

| Material    | Grade | Temperature |
|-------------|-------|-------------|
| Neat        | PG64  | 21.3 °C     |
| 2%LSBS      | PG70  | 24.6 °C     |
| 2%LSBS XLK  | PG70  | 21.7 °C     |
| 4%LSBS      | PG76  | 24.5 °C     |
| 4%LSBS XLK  | PG82  | 21.9 °C     |
| 0.7%Elvaloy | PG70  | 22.9 °C     |
| 1.5%Elvaloy | PG76  | 21.7 °C     |
| 1%PPA       | PG70  | 22.3 °C     |







| Material    | % recovery |
|-------------|------------|
| Neat        | 24.77      |
| 2%LSBS      | 42.56      |
| 2%LSBS XLK  | 41.14      |
| 4%LSBS      | 53.47      |
| 4%LSBS XLK  | 63.93      |
| 0.7%Elvaloy | 39.41      |
| 1.5%Elvaloy | 48.18      |
| 1%PPA       | 29.61      |

#### The test seems to distinguish between different modifications





## Validation

- A set of 4 binders modified with plastomers and elastomers.
- Tested using Standard T301 and new DSR elastic recovery
- Results compared to validate the concept











## **Advantages**

- Automated procedure
- Smaller sample size
- Quick and easy sample preparation
- Testing geometry stays constant throughout the test
- Temperature control is fast and accurate
- Strong correlation with T301





# **Low Temperature Testing**

#### **Fracture Tests**





## Single Edge Notched Bending Test (SENB)







# **Test Development**







# **Test Development Cont'd**







# **Test Development Cont'd**

Material Sensitivity (Mastics)







## Asphalt Binder Cracking Device (ABCD)

- A ring shaped asphalt specimen
- Exposed to a decreasing temperature profile











# **Correlation with BBR**









- SENB and ABCD show good potential.
- Further development in the SENB is required.
- Both tests will be correlated with Mixture Performance as part of the ARC





# **Summary and Future Plan**

- MSCR is a good test
- Details to be worked on:
  - -What is the stress level needed
    - 0.1 KPa is not needed
    - 3.2 KPa is a good start
    - 10.0 KPa could be needed
  - Is elasticity required?
    - Need validation
    - Need to justify limits





## **Summary and Future Plan Cont'd**

- DSR Elastic Recovery shows Potential
- Details to be Worked on:
  - -Correlation to Binder performance (Fatigue and/or Rutting)
  - Finalize testing protocol
  - -Validate test with mixture performance





## **Summary and Future Plan Cont'd**

- Low Temperature Fracture Tests are needed.
- Details to be worked on:
  - -Finalize testing protocol for SENB
  - Correlation to Mixture performance





## How can ARC work with RMAUPG?

- Provide information about where the binders will be used ( location, traffic, mix design , etc.)
- Provide loose mixtures to test at UW
- Identify good and bad performing sections
- Provide binders for WCTG with various grades and modifications





# Thank You

### Acknowledgments

- -Work is part of ARC, FHWA and WRI support is greatly appreciated
- -The research team deeply appreciates the support from WCTG and RMAUPG
- Bloom Companies is not a part of ARC, but a subcontract is under consideration with UW.

# **Questions?**

Hussain Bahia: Bahia@engr.wisc.edu



