ARC Project Update

Quantifying the Effects of Warm Mix Additives using the Asphalt Lubricity Test

Hussain U. Bahia, Andrew Hanz, and Enad Mahmoud

Warm Mix Technical Working Group Meeting December 16, 2009 Seattle, WA

Outline of Talk

- Background: Research objectives
- Experimental plan : Materials and test methods
- Effects of WMAs on Binders
 - Viscosity
 - Lubricity
- Effects of WMAs on Mixtures
 - Coating
 - Compaction in gyratory
- Relationship between Mixtures and Binders

Benefits of Warm Mix Asphalt : Reduce Energy and Impact on Environment

Temperature °F

Source: FHWA

MARC MODIFIED ASPHALT RESEARCH CENTER

Reduction in Fuel Consumption Based on Three Existing Models

MARC

CENTER

Estimated Reduction in Emissions

MARC

RESEARCH CENTER

Study Main Objectives

- Evaluate claims about how Warm Mix Additives (WMA) work.
 - Reducing viscosity ?
 - Micro-foaming ?
 - Lubrication ?
- Determine how much is needed.
 - WMA content versus temperature reduction
 - Cost is based on content, justify use by saving heat energy

Experimental Design - Materials

- Five Warm Mix Additives:
 - Two surfactants: Revix (@.5%) and Rediset (@2%),
 - One wax additive (Sasobit), and
 - Two foaming processes.
- Two base binders:
 - Unmodified PG64-22 and
 - SBS modified PG 76-22
- Two Mixture Gradations: Fine and Coarse

Mix Preparation with Modified Wirtgen Foaming System

Foamed Asphalt Shot into Bucket
Binder Temp Held Constant ~160C
Mixing Temp controlled by aggregate temp.

Foamed Asphalt on Aggregate – Immediately after foaming.

ASPHALT RESEARCH CENTER

Mix Preparation with Wirtgen System

Foamed Asphalt mixed with aggregate. After mixing, normal conditioning/compaction. Preliminary Foamed Asphalt Properties •No effect on HT True Grade immediately after foaming •Minimal effect on measured viscosity.

Aggregates Used in Mixtures

- Mixture testing
 - Fine and Coarse graded mixes
 - 10 million ESALs,
 mix design
 - (N_{des} =100)
 - Granite aggregate source

Experimental Plan - Testing

• **Binder Workability:**

- Asphalt Binder Viscosity Rotational Viscometer
- Asphalt Binder Lubricity New DSR test
- Mixture Workability:
 - Aggregate Coating: Percent Coated
 - Gyratory Compaction Indices:
 - > Construction Force Index using the GPDA (CFI)
 - > Number of Gyrations to 92 % Gmm- N92

Effect on Viscosity – PG64-22 *Finding: Effect is small and Shear rate is not important*

Effect on Viscosity – PG76-22

PG76-22 Viscosity vs. Shear Rate

Conventional Analysis of Friction and Wear – Stribeck Curve

Source: "Modern Tribology Text book, 2000. Society of Tribologists and Lubrication Engineers:

http://www.stle.org/resources/lubelearn/lubr ication/default.aspx#regimes Hyrdodynamic (No Contact)– Friction increase due to viscous drag.

Asphalt Lubricity Test – Based on ASTM Standards for oils

Stribeck : Friction a function of Measurement Tool viscosity (Z), pressure (P), and speed (N).

Asphalt Lubricity Test: - Photo of new fixture for DSR

Asphalt Lubricity Test

• Torque is monitored under constant normal force and speed. The coefficient of friction (μ) is obtained from the normal force and torque measured

$$\mu = C \times \frac{T}{P \times d}$$

- Where:

- C = 2.842 – Value of constant for the four ball testing fixture geometry, T = Torque (N), P = Normal Force (N), d = diameter (m)

New Test Method "Asphalt Lubricity Test" – Initial Results – 50 RPM

- Effect of Additive ~-0 to 10% (PG 64), -10 to -15% (PG76)
- Effect of Binder \sim -20 to -25%

MARC

CENTER

Effect of Normal Force and Speed on Asphalt Lubricity

MARC

CENTER

Is Lubricity Independent of Viscosity ? Yes...

No strong relationship

"Asphalt Lubricity " Results follow the Stribeck curve – Encouraging trend

-Majority of data is in "Hydrodynamic range": μ increases due to viscous drag -Results are consistent with analysis of common lubricants.

Mixture Workability

-Evaluation Criteria

- Aggregate Coating (% Coated Particles)
- Gyratory Compaction indices
 - > Gyrations to 92% Gmm
 - >Construction Force Index (CFI) using the GPDA

Aggregate Coating

- Aggregate coating procedure (AASHT0 T195)
 - Mixing at the prescribed temperature (held constant at 1.5 minutes)
- Separating coarse from fine (3/8" sieve).
 - Each coarse particle is examined.
- Coated particle: no aggregate surface exposed.
- Percent aggregate coating: ratio of coated particles to total particles.

Aggregate Coating (fine gradation)

PG 64-22

ODIFIED

RESEARCH

MARC

Aggregate Coating (fine gradation)

MODIFIED ASPHALT

RESEARCH CENTER

MARC

Aggregate Coating (coarse mix) Much less Effect

• PG 76-22

Coating of Aggregates as a Function of Binder Viscosity

MARC

CENTER

Mixture Compaction- Densification Measured in Gyratory + PDA

Pressure Distribution Analyzer (PDA) allow for

- Calculating resistive forces in the mix during compaction (w)
- Construction Force Index (CFI) : area under the Resistive Force (*w*/vs. Gyration curve

Effects of WMAs on CFI (Mixture Workability)

MARC

CENTER

- Major WMA effects are measured only at 90°C for foaming and Revix.
- Rediset at 2% show higher effects at all temperatures.

Mixture Workability

ODIFIED

RESEARCH

MARC

- There are minor effects of Revix and foaming at 110 and 125 C.
- Rediset has more effects .
- Major WMA effects is recognized only at 90°C.

Regression Analysis

Model Parameters

-Asphalt Binder Workability

- Viscosity: Tested at 105C and 125C
- Lubricity: Tested at 90C and 100C

– Gradation

- Quantified using Beta
 - > Fine: 4.29
 - > Coarse: 6.34

Response

- Mixture Workability CFI and N92
- Aggregate Coating % Coated

Gradation Analysis and Modeling

MODIFIED ASPHALT

RESEARCH

MARC

Regression Results (N92)

• N92 = - 59.6 + 9.87 Beta + 356 Coef. Friction -0.000104 Visc

Predictor	Coef	SE Coef	Τ	Р
Constant	-59.6	25.41	-2.35	0.028
Beta	9.87	1.187	8.32	0.000
Coef. Friction	356	229	1.56	0.133
Visc	-0.0001	0.00038	-0.27	0.787

Regression Results (N92)

MODIFIED

RESEARCH

MARC

Summary of Interim Findings

- Warm Mix Additives affect lab coating & compaction.
 - Minor reduction in viscosity
 - Further work needed to quantify effects of lubricity (internal resistance to flow)
- Main effects are at lower temperatures (< 100 C).
- Cost need to be justified by energy savings & environmental impact.

Interim Findings – Comparison of Lubricity to Mix Workability

- Current Analysis
 - Gradation (${\rm B}$) dominates
 - However...Further work on lubricity is needed.
- Measure "kinetic friction" zone to define min. μ
- Need effect of WMA Additives on min. coef. Friction.

IARC

Lubricity – Next Steps

- Current Procedure limited
 - -Temp: Range limited by heating system.
 - Normal Force: Machine limitations
- New Geometry Under Development
 - Higher temperatures/Normal Force
- Assessment of "Lubricity Test" for WMA
 - Based on entire Stribeck Curve, not just region of "viscous drag"

Acknowledgments

- Federal Highway Administration
- Western Research Institute
- Suppliers of additives

